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Preface

Background. These notes were written to accompany my Heriot-Watt
University course F17LP Logic and proof which I designed and wrote in 2011.
The course was in fact instigated by my colleagues in Computer Science and
was therefore designed mainly for first year computer science students, but
the course is also offered as an option to second year mathematics students.

In writing this course, I was particularly influenced, like many others,
by Smullyan’s book [13]. Chapters 1 and 3 of these notes cover roughly the
same material as the first 65 pages of [13]. I have also incorporated ideas to
be found in [12] and [14].

This is very much a first introduction to logic and I have been mindful
throughout of the nature of the students taking the course, but anyone com-
pleting it should have good foundations for further study if desired.

Aims. This is an introduction to first order logic suitable for first and second
year mathematicians and computer scientists. There are three components
to this course: propositional logic, Boolean algebras and predicate or first-
order logic. Logic is the basis of proofs in mathematics — how do we know
what we say is true? — and also of computer science — how do I know this
program will do what I think it will do? Propositional logic and predicate
logic are the two ingredients of first-order logic and are what make proofs
work. Propositional logic deals with proofs that can be analysed in terms of
the words and, or, not, implies whereas predicate logic extends this to en-
compass the use of the words there exists and for all. Boolean algebra, on the
other hand, is an algebraic system that arises naturally from propositional
logic and is the basic mathematical tool used in circuit design in computers.

How much maths? Surprisingly little school-type mathematics is needed
to learn and understand logic: this course doesn’t involve any calculus, for
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example. In fact, most of the maths you studied at school was invented be-
fore 1800 and so is (mainly) irrelevant to the needs of computer science (a
slight exaggeration, but not by much). The real mathematical prerequisite
is an ability to manipulate symbols: in other words, basic algebra. Anyone
who can write programs should have this ability already.

Books. There are two kinds of books: those you read and those you work
from. For background reading, I recommend [2, 5, 6]. The remaining books
are work books. Of those, you might want to start with Zegarelli [17]; don’t
be put off by the Dummies tag, since it isn’t a bad introduction to logic.
For some of the more obviously mathematical content, Lipschutz and Lipson
[8] is useful. The chapters you want, in the second edition are: 1, 2, 3, 4,
and 15. However, let me emphasize that we won’t be covering everything
you will find there. Another maths type book is Hammack [4]. This might
be more suitable for the more mathematically inclined student. The book
by Smullyan [13] I used when I was writing this course. The book by Teller
[15] is a step-up from the Dummies book. There are also two websites worth
checking out: [16] is a truth table generator and [7] is a truth tree solver.

Corrections. These are first generation typed notes so I have no doubt that
errors have crept in. If you spot them, please email me.

Syllabus. Below is the formal syllabus for the course. At the end of these
notes, you will find a specimen exam paper. Exercises may be found through-
out the book at the ends of sections.

Introduction
An overview of the sorts of questions we shall be dealing with in this
course and, in particular, why mathematics is such an important in-
gredient in computer science.

1. Propositional logic (PL)
1.1 Informal propositional logic: I shall introduce (PL) in the first in-
stance as a very simple kind of language in which to express various
kinds of simple decision-making scenarios. Later we shall see that it
can also be viewed as a programming language.
1.2 Syntax of propositional logic: Well-formed formulae (wff), atoms,
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compound statements, trees (examples of data structures), parse trees,
principal connective, order of precedence rules and brackets.
1.3 Semantics of propositional logic: Definition of the connectives by
means of truth-tables, truth assignments, truth-tables in general, con-
tradictions, contingencies and tautologies, satisfiability.
1.4 Logical equivalence: Logical equivalence (≡), some important ex-
amples of logical equivalences, how to say ‘exactly one’.
1.5 Two examples: Sudoku viewed through PL glasses.
1.6 Adequate sets of connectives: Truth functions, the connectives 0
and 1, nand and nor, adequate sets of connectives. Important theo-
rem: every truth-function is the truth-table of some wff.
1.7 Normal forms: Negation normal form (NNF), disjunctive normal
form (DNF), conjunctive normal form (CNF).
1.8 P = NP?: The satisfiability problem: example using sudoku; con-
nections with the question of whether P = NP? and its significance.
This section is mainly for background knowledge and interest and to
explain how (PL) can also be viewed as a programming language.
1.9 Valid arguments: What do we mean by an argument? The use of
(PL) in formalizing certain kinds of simple arguments — one of the
goals of logic: to mechanize reasoning. The semantic turnstile |= and
its properties; classical arguments: modus ponens, modus tollens, dis-
junctive syllogism, hypothetical syllogism (these terms do not have to
be memorized).
1.10 Truth-trees: Derivation of tree rules, the truth-tree algorithm, us-
ing truth-trees to solve problems: determining whether a wff is a tau-
tology, determining whether an argument is valid, determining whether
a finite set of wff is satisfiable, writing a wff in DNF; the symbol `. The
following is non-examinable: the soundness and completeness theorem
for propositional logic.

2. Boolean algebras
2.1 Definition of Boolean algebras: From propositional logic to Boolean
algebras; the Lindenbaum algebra; the axioms defining a Boolean alge-
bra.
2.2 Set theory: Introduction to sets, the power set of a set, intersections,
unions, and relative complements, Venn diagrams; the two-element
Boolean algebra, simplifying Boolean expressions.
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2.3 Binary arithmetic: Writing numbers in base 2; adding numbers in
base 2.
2.4 Circuit design: Shannon’s work on switching circuits and Boolean
algebra, logic gates, from switches to transistors, designing combinato-
rial circuits; binary arithmetic; how to build an adding machine.
2.5 Transistors: The main goal of this section is to explain why tran-
sistors are such important components in a computer.

3. First-order logic (FOL)
3.1 Splitting the atom: names, predicates and relations: Names or con-
stants and variables; 1-place predicates, n-place or n-ary predicates,
binary and ternary predicates, the arity of a predicate; atomic formu-
lae; relations of different arities; directed graphs and binary relations.
3.2 Structures: Domains and relations; examples.
3.3 Quantification ∀ and ∃ : ∀ regarded as an infinite conjunction and
∃ regarded as an infinite disjunction; a famous argument on Socrates’
mortality analysed.
3.4 Syntax: A first-order language, formulae, parse trees; subtrees of
trees, free and bound variables, the scope of a quantifier, closed for-
mula/sentence.
3.5 Semantics: Interpretations, models, logically valid sentences; valid
arguments; logical equivalence; satisfiable; contradictions.
3.6 De Morgan’s laws for quantifiers: ¬(∀x)A ≡ (∃)¬A and ¬(∃x)A ≡
(∀x)¬A.
3.7 Truth-trees for first-order logic: The two additional rules needed to
deal with (∀x) and (∃x); examples. The following is non-examinable:
the deeper theory of truthtrees; systematic truth-trees; Gödel’s com-
pleteness theorem (no proof).
3.8 The Entscheidungsproblem: Turing, FOL and the computer.
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1. The world is all that is the case. — Tractatus Logico-Philosophicus,
Ludwig Wittgenstein.

Discrete mathematics

Most of the mathematics you learnt at school is pretty irrelevant to com-
puter scientists. I am exaggerating slightly, but not by much. The reason
is that most of the mathematics you studied at school is old, very old. In
fact, most was invented before 1800. The mathematics that is important
in computer science is known as discrete mathematics. You will learn this
mathematics from scratch at university. The only prerequisites are an ability
to manipulate symbols — and if you have ever written a successful computer
program you have already demonstrated that ability. Mathematics is the tool
needed in all the sciences such as physics, engineering and computer science.
My aim is not to turn you into mathematicians, but to help you become bet-
ter computer professionals who understand how to use mathematics in your
work. The particular discrete mathematics we shall study in this course is
called first-order logic. In this section, I want to describe in outline some of
the ways that logic is used in CS in the hope that it will whet your appetite
to learn more.

The computer

If the Victorian age can be characterized by the steam engine, then ours
can be characterized by the computer. Computers are usually viewed as
simply products of technology, but computers do not work by engineering
alone. They are driven by ideas, and some of these ideas are the subject
of this course. One of the reasons the computer is so important is that it
is a general purpose machine. In the past, different machines had to be
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constructed for different purposes, but one and the same computer — the
hardware — can be made to do different jobs by changing the instructions
or programs it is given — the software. I shall now examine in a little more
detail these two different aspects of the computer, and I hope to convince
you that there are mathematical ideas that lie behind them both. It is these
mathematical ideas that will form the basis of this course.

Hardware: the transistor

The hardware of a computer is the part that we tend to notice first. It
is also the part that most obviously reflects advances in technology. The
single most important component of the hardware of a computer is called
a transistor. Computers contain millions or even billions of transistors. In
2015, for example, Wikipedia claimed that there are commercially available
chips containing 5 · 5 billion transistors. There is even an empirical result,
known as Moore’s law, which says the number of transistors in integrated
circuits doubles roughly every 2 years. Transistors were invented in the 1940s
and are constructed from semiconducting materials, such as silicon. The
way they work is quite complex and depends on the quantum-mechanical
properties of semiconductors, but what they do is very simple. The basic
function of a transistor is to amplify a signal. A transistor is constructed in
such a way that a weak input signal is used to control a large output signal
and so achieve amplification of the weak input1. An extreme case of this
behaviour is where the input is used to turn the large input on or off. That
is, where the transistor is used as an electronic switch. It is this function
which is the most important use of transistors in computers. To understand
this a little better, you have to know that computers operate using binary
logic. This means that all the information that a computer can handle —
text, pictures, sound, whatever — is represented by means of sequences that
consist of two values. In a computer, these two values might be high or
low voltages but mathematically we think of them as 1 or 0, or T and F ,
standing for true and false, respectively2. From a mathematical point of
view, a transistor can be regarded as a device with one input, one control
and one output.

1If you have ever used a shower where a small adjustment of the temperature con-
trol changes the water from freezing cold to boiling hot, you will have experienced what
amplification of a signal can be like.

2It might help in what follows to think of 1 to mean that a current is flowing and 0 to
mean that a current is not flowing.
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• If 0 is input to the control then the switch is closed and the output is
equal to the input.

• If 1 is input to the control then the switch is open and the output is 0
irrespective of the input.

The table below shows how a transistor functions.

Input Control Output

0 0 0
1 0 1
0 1 0
1 1 0

A transistor on its own doesn’t appear to accomplish very much, but
more complicated behaviour can be achieved by connecting transistors to-
gether into what are called circuits. Remarkably, the mathematics needed to
understand how to design circuits using transistors is very old and predates
the invention of the transistor by over 100 years. In 1854, George Boole
(1815–1864), an English mathematician, wrote a book, An investigation of
the laws of thought, where he tried to show that some of the ways in which
we reason could be studied mathematically. This led to what are now called
Boolean algebras and was also important in the development of propositional
logic and set theory. We shall study all of these topics in this course. The
discovery that Boole’s work could be used to help in the design of circuits
was due to to Claude Shannon (1916–2001) in 1937. Boolean algebras are
now the basic mathematical tool needed to design computer circuits. In
this course, we shall define Boolean algebras, study their properties, and use
them to design simple circuits. We shall also show that all circuits can be
constructed from transistors.

P = NP? Or how to make a $1, 000, 000

Imagine a very complex circuit constructed out of the transistors de-
scribed above. There are n input wires and one output wire. I ask a very
simple question about this circuit: is there some combination of inputs (that
is, some combination of 0s and 1s on the input wires) so that the circuit
outputs 1? This is a version of what is known as the satisfiability problem
(SAT). For a single transistor the answer to this question is very easy: the
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transistor output is 1 precisely when input = 1 and control = 0. You might
think that the answer to my general question is likewise easy. There are 2n

possible combinations of 0s and 1s on the n input wires. Thus we simply
try all possible combinations of inputs. Either the output is always 0, in
which case we have answered our original question in the negative, or there
is some input combination that does yield 1 as an output, in which case we
shall eventually find it and the answer to the question is in the affirmative.
But there is a snag. The function n 7→ 2n is an example of an exponential
function. Simply put, it gets very big very quickly. Let me illustrate what I
mean. Suppose that n = 90 so that there are 90 input wires. Suppose also
that you can check each combination of 0s and 1s on the input wires in 10−9

seconds. Then the total time needed to check all possible combinations is
290 · 10−9 seconds. A simple calculation using logs (since 10 ≈ 23·322) shows
that 290 ≈ 1027. Thus the total time is 1018 seconds. This is just over twice
the age of the universe! We deduce that our method for solving SAT is not
very practical (to say the least) which raises the question of whether there is
a more practical way of solving this problem. So important is this problem
that a one million dollar prize (The Millennium Prize Problems) has been
offered for anyone who either finds a fast algorithm to solve it or proves that
no such algorithm exists.

Software: algorithms

An algorithm is a method designed to solve a specific problem in a system-
atic way which does not require any intelligence in its application. This is not
a precise definition instead it is intended to convey the key idea. Algorithms
embody the mathematical idea of how to solve a problem. Much, but by
no means all, of mathematics is about designing algorithms to solve specific
problems. Mathematicians have been doing this for about 4,000 years. For
example, at school we learn algorithms to add, subtract, multiply and divide
numbers. A program is an implementation of an algorithm in a computer
language (such as Python, Java etc). Programs need to deal with practical
issues that mathematicians ignore. For example, the nature of the input,
output or error messages. Think of algorithms and programs as two sides
of the same coin. They lie at the interface between mathematics and CS.
Thus every single program you ever write or use is the implementation of
an algorithm. It follows that mathematicians have been writing programs
for nearly 4,000 years. It’s just that they only got around to inventing the
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computer less than 100 years ago. There is a huge amount of experience and
concrete methods that computer scientists can draw upon in mathematics to
help them write their programs.

From transistors to programs

To a first approximation, then, a computer is a machine consisting of
millions of electronic switches. But this raises the question of how such a
mechanism could do all the things that a computer can do. The answer is
that by setting those electronic switches to different positions inputs can be
converted to outputs in different ways. At a fundamental level, this is what
the software of the computer does. Think of the computer hardware as being
a little like a piano and the software as being the music that can be played on
the piano. The software that organizes all those electronic switches is called,
of course, a program. Now at this point, you may be wondering how on earth
anyone could write a program to make a computer work when they have to
worry about what millions of little electronic switches are going to do. The
answer is another mathematical idea: we arrange a complex structure into
a hierarchy of substructures which perform easy to understand functions.
An analogy might help. People are constructed from cells as a computer
is constructed from transistors, but it would be a poor doctor who viewed
their patient as simply a collection of cells. Instead, we group cells together
into organs, such as the heart, brain, liver and so on, and we understand
those organs by the functions that they perform. In the same way, the
transistors of a computer are organized into circuits that perform certain
functions and so on until we reach the top-most layer where we just click on
a mouse or poke the screen to achieve certain goals. We shall be interested
not in the top-most layer but a little further down the hierarchy where we
view a computer as consisting of a memory connected to a CPU (central
processing unit). It is at this level that all the wonderful effects at the top-
most level are produced, and it is at this level that the programs work to
produce all those wonderful effects. Thus programs are written to carry out
tasks at this level in a way that is easy for humans to understand using some
computer language designed for this purpose, and then are translated into
a form that the computer can deal with ultimately leading to a description
of which transistors are to be open at any given time. Thus to solve a
problem using a computer we first have to find an algorithm that solves the
problem (mathematics might help you here); we then write a program in
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some convenient computer language; and then we run the computer using
this program to accomplish our goals. This all sounds very straightforward
but there is a problem. If you write a program that you claim solves a
problem how can I — the user — be convinced that your program actually
works as advertised? The mere fact that you are convinced you are right
is simply not good enough — we all make mistakes and we are all limited
in our intellectual abilities. In fact, the burden of proof that you are right
is on you, the one writing the program, and not on me, the user of your
program. This raises the question of how we can prove that an algorithm
works. Mathematicians figured out how to do this, at least in principle, well
over 2,300 years ago. Logic is a language and a collection of methods that
enables us to write down proofs. This is what this course is about. It does
not, however, tell you how to find proofs. To go back to my musical analogy,
logic tells you what notes are available and what notes go well together but
doesn’t tell you how to compose — which requires talent, practice, creativity
etc.

Some key questions about programs

1. How do we prove our programs work? Think of the programs that
enable planes to be flown using fly-by-wire or are embedded in medi-
cal equipment. We need a guarantee that a program does what it is
supposed to do.

2. How do we design good programming languages?

3. How efficient are our programs?

4. Are there intrinsic limitations to what can be computed (yes: see the
work of Alan Turing)?

5. How can we emulate the way the brain works? We would like to build
devices that simulate intelligence.

All the questions I have raised can be handled using logic. Logic is the
subject that studies how we reason. It is convenient when learning logic to
divide it into two parts.

Propositional logic (PL). This is the logic of elementary decision mak-
ing. It is very simple and easy to use, there are some interesting and
important applications, but it is not very powerful.
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Predicate or first-order logic (FOL). This is an extension of PL that
includes variables, quantifiers and the apparatus needed to describe
much more complex reasoning. It is very powerful, being the basis of
all logic studied in CS and suitable for describing all of mathematics,
but it is therefore necessarily more complex.

PROLOG

Computer programs are written using artificial or formal languages called
programming languages. There are two big classes of such languages: impera-
tive and declarative. In an imperative language, you have to specify in detail
how the solution to a problem is to be accomplished. In other words, you
have to tell the computer how to solve the problem. In a declarative lan-
guage, you tell the computer what you want to solve and leave the details
of how to accomplish this to the software. Declarative languages sound like
magic but some of them, such as PROLOG, are based on ideas drawn from
first-order logic. This language has applications in AI (artificial intelligence).

Logic: a little history

Although the ideas of proof go back a long time, the modern theory of
logic is really a product of the latter part of the nineteenth century and the
early decades of the twentieth. It is particularly associated with the follow-
ing names: Boole, Cantor, Church, Frege, Gentzen, Gödel, Hilbert, Russell,
Turing and von Neumann. I recommend you look them up on Wikipedia to
find out what contributions they made. The names of Turing and von Neu-
mann are also associated with the early development of the computer. In
fact, Alan Turing is often called the father of the computer and after WWII,
Turing in Britain and von Neumann in the States were both involved in
building the first computers. This connection is not accidental. In the early
decades of the twentieth century, mathematicians and philosophers began to
analyse in great detail how people reason and prove things. It was only a
small step from that to wondering whether their insights could be embodied
in machines. An account of some of their work can be found in the graphic
novel [2]. Logic is a major tool in computer science often described as the
‘calculus of computer science’. It is also important in mathematics and in
philosophy although in this course, we shall not have anything to say about
the philosophical side of logic.
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Let me just digress a bit to say more about Turing. Alan Turing was
one of the great mathematicians of the twentieth century, and perhaps un-
usually for a mathematician his life and work has affected the lives of people
all over the world. Turing’s reputation as the father of computer science
rests first of all on a paper he wrote in 1937: A. M. Turing, On computable
numbers, with an application to the Entscheidungsproblem, Proceedings of
the London Mathematical Society, 42 (1937), 230–265. In this paper, Tur-
ing describes what we now call in his honour a universal Turing machine.
This is a mathematical blueprint for building a computer. Such a machine
runs what we would now call programs. But his description is mathemati-
cal and independent of technology. You can access copies of this paper via
the links to be found on the Wikipedia article on the Entscheidungsproblem
(see below). A problem can be solved algorithmically exactly when it can
be solved by a program running on a Turing machine. Remarkably, Tur-
ing showed in his paper that there were problems that cannot be solved by
computer — not because they weren’t powerful enough but because they
were intrinsically unable to solve them. Thus the limitations of computers
were known before the first one had ever been built. The idea that there
are limitations to computers might surprise you but is an important theme
of theoretical computer science. Turing didn’t set out to invent computers.
He set out to solve a famous problem stated in 1928 by the great German
mathematician David Hilbert. Because Hilbert was German this problem is
always known by its German title the Entscheidungsproblem which simply
means the decision problem. Roughly speaking, and using modern terminol-
ogy, this problem asks whether it is possible to write a program that will
answer all mathematical questions. Turing proved that this was impossible.
The essence of mathematics is the notion of proof. What a proof is is de-
scribed by logic. The Entscheidungsproblem is a question about logic. At
the end of this course, you will understand what is meant by this problem
and its significance in logic.

Turing’s work in his paper was the beginning of a short but extraordi-
narily varied and influential career. During WWII, he worked in Hut 8 at
Bletchley Park, the Government Code and Cypher School, and was central
to the breaking of Dolphin, the Nazi Enigma code. He was also principal
designer of the bombe, a codebreaking machine. After the war, he designed
and developed ACE, the Automatic Computing Engine, an electronic digital
computer. Later he moved to Manchester and oversaw the Computing Ma-
chine Laboratory. In 1947, he founded the field of Machine Intelligence now
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known as Artificial Intelligence. In 1952, he carried out pioneering work in
mathematical biology by studying pattern formation in animals. This work
involved what we would now call computer simulation. You can read an
exegesis of Turing’s paper in [11].

Summary of this course

The main goal of this course is to introduce you to logic, a subject fun-
damental to both mathematics and computer science and, indeed, analytic
philosophy. For convenience in learning, the logic we shall study is divided
into two parts: propositional logic and first-order logic. We shall start with
propositional logic because it is easy to understand and to use but not very
powerful, whereas later we shall introduce first-order logic which is more
powerful but harder to understand and to use.

Propositional logic is useful in helping us understand computer programs
and Boolean algebra, which is closely related to propositional logic, is the
basis of digital circuit design. I shall only touch on circuit design but we will
at least look at how to construct a simple calculator. You can read more
on circuits and Boolean algebras in [10]. An important question that arises
in propositional logic is the satisfiability problem. Many problems that on
the face of it have nothing to do with logic can be rephrased as satisfiability
problems in propositional logic, and I shall describe some examples. This
problem is also at the core of one of the great unsolved mathematical ques-
tions in theoretical computer science: namely, whether P is equal to NP. I
shall talk a little about this problem in this course.

First-order logic is really the basis of the whole of mathematics. It is also
important in the design of certain so-called logic programming languages
such as PROLOG. Logic is also an important tool in program verification.

Exercises 1

The exercises below do not require any prior knowledge but introduce ideas
that are important in this course

1. Here are two puzzles by Raymond Smullyan mathematician and magi-
cian. On an island there are two kinds of people: knights who always
tell the truth and knaves who always lie. They are indistinguishable.
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(a) You meet three such inhabitants A, B and C. You ask A whether
he is a knight or knave. He replies so softly that you cannot make
out what he said. You ask B what A said and they say ‘he said
he is a knave’. At which point C interjects and says ‘that’s a lie!’.
Was C a knight or a knave?

(b) You encounter three inhabitants: A, B and C.
A says ‘exactly one of us is a knave’.
B says ‘exactly two of us are knaves’.
C says: ‘all of us are knaves’.
What type is each?

2. This question is a variation of one that has appeared in the puzzle
sections of many magazines. There are five houses, from left to right,
each of which is painted a different colour, their inhabitants are called
Sarah, Charles, Tina, Sam and Mary, but not necessarily in that order,
who own different pets, drink different drinks and drive different cars.

(a) Sarah lives in the red house.

(b) Charles owns the dog.

(c) Coffee is drunk in the green house.

(d) Tina drinks tea.

(e) The green house is immediately to the right (that is: your right)
of the white house.

(f) The Oldsmobile driver owns snails.

(g) The Bentley owner lives in the yellow house.

(h) Milk is drunk in the middle house.

(i) Sam lives in the first house.

(j) The person who drives the Chevy lives in the house next to the
person with the fox.

(k) The Bentley owner lives in a house next to the house where the
horse is kept.

(l) The Lotus owner drinks orange juice.

(m) Mary drives the Porsche.

(n) Sam lives next to the blue house.
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There are two questions: who drinks water and who owns the aardvark?

3. Bulls and Cows is a code-breaking game for two players: the code-
setter and the code-breaker. The code-setter writes down a 4-digit
secret number all of whose digits must be different. The code-breaker
tries to guess this number. For each guess they make, the code-setter
scores their answer: for each digit in the right position score 1 bull (1B),
for each correct digit in the wrong position score 1 cow (1C); no digit
is scored twice. The goal is to guess the secret number in the smallest
number of guesses. For example, if the secret number is 4271 and I
guess 1234 then my score will be 1B,2C. Here’s an easy problem. The
following is a table of guesses and scores. What are the possibilities for
the secret number?

1389 0B, 0C
1234 0B, 2C
1759 1B, 1C
1785 2B, 0C

4. Consider the following algorithm. The input is a positive whole number
n; so n = 1, 2, 3, . . . If n is even, divide it by 2 to get n

2
; if n is odd,

multiply it by 3 and add 1 to get 3n+ 1. Now repeat this process and
only stop if you reach 1. For example, if n = 6 we get successively
6, 3, 10, 5, 16, 8, 4, 2, 1 and the algorithm stops at 1. What happens if
n = 11? What about n = 27? Is it true that whatever whole number
you input this procedure always yields 1?

5. Hofstadter’s MU-puzzle. A string is just an ordered sequence of sym-
bols. In this puzzle, you will construct strings using the letters M, I, U
where each letter can be used any number of times, or not at all. You
are given the string MI which is your only input. You can make new
strings only by using the following rules any number of times in suc-
cession in any order:

(I) If you have a string that ends in I then you can add a U on at the
end.

(II) If you have a string Mx where x is a string then you may form
Mxx.

(III) If III occurs in a string then you may make a new string with
III replaced by U .
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(IV) If UU occurs in a string then you may erase it.

I shall write x→ y to mean that y is the string obtained from the string
x by applying one of the above four rules. Here are some examples:

• By rule (I), MI →MIU .

• By rule (II), MIU →MIUIU .

• By rule (III), UMIIIMU → UMUMU .

• By rule (IV), MUUUII →MUII.

The question is: can you make MU?

6. Sudoku puzzles have become very popular in recent years. The newspa-
per that first launched them in the UK went to great pains to explain
that they had nothing to do with maths despite involving numbers. In-
stead, they said, they were logic problems. This of course is nonsense:
logic is part of mathematics. What they should have said is that they
had nothing to do with arithmetic. The goal is to insert digits in the
boxes to satisfy two conditions: first, each row and each column must
contain all the digits from 1 to 9 exactly once, and second, each 3× 3
box must contain the digits 1 to 9 exactly once.

1 4 2 5
2 7 1 3 9

4
2 7 1 6

4
6 7 4 3

7
1 2 7 3 5
3 8 2 7



Chapter 1

Propositional logic

2.012. In logic nothing is accidental: if a thing can occur in
a state of affairs, the possibility of the state of affairs must be
written into the thing itself. — Tractatus Logico-Philosophicus,
Ludwig Wittgenstein.

The main goal of this course is to introduce first-order logic which can
be traced back to the work of George Boole (1815–1864) and Gottlob Frege
(1848–1925). This is divided into two parts: the first, and simpler, part is
called propositional or sentential logic; the second, and more complex part,
is called first-order or predicate logic. We deal with the predicate logic in
Chapter 3.

First-order logic is an example of an artificial language to be contrasted
with natural languages like English, Welsh, Estonian or Basque. Natural lan-
guages are clearly important since we all live our lives through the medium
of our native languagues. But natural languages are often ambiguous and
imprecise when we try to use them in technical situations. In such cases,
artificial languages are used. For example, programming languages are ar-
tificial languages suitable for describing algorithms to be implemented by
computer whereas first-order logic is an artificial language used to describe
logical reasoning.

The description of a language has two aspects: syntax and semantics.
Syntax, or grammar, tells you what the allowable sequences of symbols are,
whereas semantics tells you what they mean. Thus to describe first-order
logic I will need to describe both its syntax and its semantics.

1
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1.1 Informal propositional logic

We begin by analysing everyday language. Our goal is to construct a precise,
unambiguous language that will enable us to determine truth and falsity
precisely. Language consists of sentences but not all sentences will be grist
to our mill. Here are some examples.

1. Homer Simpson is prime minister.

2. The earth orbits the sun.

3. To be or not to be?

4. Out damned spot!

Sentences (1) and (2) are different from sentences (3) and (4) in that we can
say of sentences (1) and (2) whether they are true or false — in this case, (1)
is false and (2) is true — whereas for sentences (3) and (4) it is meaningless
to ask whether they are true or false, since (3) is a a question and (4) is an
exclamation.

A sentence that is capable of being either true or false (though
we might not know which) is called a statement.

In mathematics and computer science, it is enough to study only statements
(although if we did that in everyday life we would come across as rather
robotic).

Statements come in all shapes and sizes from the banal ‘Marmite is brown’
to the informative ‘the battle of Hastings was in 1066’. But in our work, the
only thing that interests us in a statement is whether it is true (T) or false
(F). In other words, what its truth value is and nothing else. We can now
give some idea as to what the subject of logic is about.

Logic is about deducing whether a statement is true or false on
the of information given by some collection of statements.

I shall say more about this later.

Some statements can be analysed into combinations of simpler statements
using special kinds of words called connectives.
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Example 1.1.1. Let p be the statement It is not raining. This is related to
the statement q given by It is raining. We know that the truth value of q
will be the opposite of the truth value of p. This is because p is the negation
of q. This is precisely described by the following truth table.

It is raining It is not raining
T F
F T

To avoid pecularities of English grammar, we replace the word ‘not’ by
the slighly less natural phrase ‘It is not the case that’. Thus It is not the
case that it is raining means the same thing as It is not raining though if you
used that phrase in everyday language you would sound like a lawyer. We go
one step further and abbreviate the phrase ‘It is not the case that’ by not.
Thus if we denote a statement by p then its negation is not p. The above
table becomes

p not p
T F
F T

This summarizes the behaviour of negation for any statement p. What hap-
pens if we negate twice? Then we simply apply the above table twice.

p not not p
T T
F F

Thus It is not the case that it is not raining should mean the same as It
is raining. I know it sounds weird and it would be an odd thing to say as
anything other than a joke but we are building a language suitable for maths
and CS rather than everyday usage. The word not is our first example of a
logical or propositional connective. It is a unary connective because it is only
applied to one input.

I shall now introduce some further connectives all of which take exactly
two inputs and so are examples of binary connectives.

Example 1.1.2. Under what circumstances is the statement It is raining
and it is cold true? Well, I had better be both wet and cold. However, in
everyday English the word ‘and’ often means ‘and then’. The statement I
got up and had a shower does not mean the same as I had a shower and got
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up. The latter sentence might be a joke: perhaps my roof leaked when I was
asleep. Our goal is to eradicate the ambiguities of everyday language so we
cannot allow these two meanings to coexist. Therefore in logic only the first
meaning is the one we use. To make it clear that I am using the word ‘and’
in a special sense, I shall write it in bold and.

Given two statements p and q, we can describe the truth values of the
compound statement p and q in terms of the truth values assumed by p and
q by means of a truth table.

p q pand q
T T T
T F F
F T F
F F F

This table tells us that the statement Homer Simpson is prime minister and
the earth orbits the sun is false. In everyday life, we might struggle to know
how to interpret such a sentence — if someone turned to you on the bus and
said it, I think it would be alarming rather than false. Let me underline that
the only meaning we attribute to the word and is the one described by the
above truth table. Thus contrary to everyday life the statements I got up
and I had a shower and I had a shower and I got up mean the same thing.

Example 1.1.3. The word or in English is a bit more troublesome. Imagine
the following set-up. You have built a voice-activated robot that can rec-
ognize shapes and colours. It is placed in front of a white square, a black
square and a black circle. You tell the robot to choose a black shape or a
square. It chooses the black square. Is that good or bad? The problem is
that the word or can mean inclusive or in which case the choice is good or
it can mean exclusive or in which case the choice is bad. Both meanings are
useful so rather than choose one over the other we use two different words to
cover the two different meanings. This is an example of disambiguation.

We use the word or to mean inclusive or.

p q por q
T T T
T F T
F T T
F F F
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Thus p or q is true when at least one of p and q is true. We use the word
xor to mean exclusive or.

p q pxor q
T T F
T F T
F T T
F F F

Thus p xor q is true when exactly one of p and q is true. Although we
haven’t got far into our study of logic, this is already a valuable exercise. If
you use the word or you should always decide what you really mean.

Our next propositional connective will be familiar to maths students but
less so to CS students. This is is equivalent to or if and only if that we write
as iff. Its meaning is simple.

p q p iff q
T T T
T F F
F T F
F F T

Observe that not(p iff q) means the same thing as p xor q. This is our first
result in logic. By the way, I have added brackets to the first statement to
make it clear that we are negating the whole statement p iff q and not merely
p.

Our final connective is the nightmare one if p then q which we shall write
as p implies q. In everyday language, we think of the word implies as es-
tablishing a connection between p and q. But we want to be able to write p
implies q whatever the sentences p and q are and say what the truth value
of p implies q is in terms of the truth values of p and q. To understand
the truth table for this connective remember that in logic we want to deduce
truths from truths. We therefore never want to derive something false from
something true. It turns out that this minimum condition is actually suffi-
cient for what we want to do. (See Example 1.4.14 for an attempt to make
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this definition plausible.)

p q p implies q
T T T
T F F
F T T
F F T

This does have some bizzare consequences. The statement Homer simpson
is prime minister implies the sun orbits the earth is in fact true. This sort
of thing can be offputting when first encountered and can seem to undermine
what we are trying to achieve. But remember, we are using everyday words
in very special ways.

As long as we translate between English and logic choosing the
correct words to reflect the meaning we intend to convey then
everything will be fine. In fact, this example provides strong
motivation for using symbols rather than the bold forms of the
English words. That way we will not be misled.

Propositional or Boolean connectives

This course Zegarelli English Technical
¬p ∼ p not p negation
p ∧ q p& q p and q conjunction
p ∨ q p ∨ q p or q or both disjunction
p→ q p→ q if p then q conditional
p↔ q p↔ q p if and only if q biconditional
p⊕ q NA p xor q exclusive disjunction

Our symbol for and is essentially a capital ‘A’ with the cross-bar missing,
and our symbol for or is the first letter of the Latin word vel which meant
‘or’.

A statement that cannot be analysed further using the propo-
sitional connectives is called an atomic statement or simply an
atom. Otherwise a statement is said to be compound. The truth
value of a compound statement can be determined once the truth
values of the atoms are known by applying the truth tables of the
propositional connectives defined above.
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Example 1.1.4. Determine the truth values of the following statements.

1. (There is a Rhino under the table)∨¬(there is a Rhino under the table).
[Always true]

2. (1 + 1 = 3)→ (2 + 2 = 5). [True]

3. (Mickey Mouse is the President of the USA)↔ (pigs can fly). [Amaz-
ingly, true]

What we have done so far is informal. I have just highlighted some fea-
tures of everyday language. What we shall do next is formalize. I shall
describe to you an artificial language called PL motivated by what we have
found in this section. I shall first describe its syntax and then its semantics.
Of course, I haven’t shown you yet what we can actually do with this artificial
language. That I shall do later.

I should also add that the propositional connectives I have introduced are
not the only ones, but they are the most useful. I shall show you later that
in fact we can be much more economical in our choice of connectives without
sacrificing expressive power.

1.2 Syntax of propositional logic

We are given a collection of symbols called atomic statements or atoms.
I’ll usually denote these with lower case letters p, q, r, . . . or their decorated
variants p1, p2, p3, . . .. A well-formed formula or wff is constructed in the
following way:

(WFF1). All atoms are wff.

(WFF2). If A and B are wff then so too are (¬A), (A∧B), (A∨B), (A⊕B),
(A→ B) and (A↔ B).

(WFF3). All wff are constructed by repeated application of the rules (WFF1)
and (WFF2) a finite number of times.

A wff which is not an atom is said to be a compound statement.

Example 1.2.1. We show that

(¬((p ∨ q) ∧ r))

is a wff.
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1. p, q and r are wff by (WFF1).

2. (p ∨ q) is a wff by (1) and (WFF2).

3. ((p ∨ q) ∧ r) is a wff by (1), (2) and (WFF2).

4. (¬((p ∨ q) ∧ r)) is a wff by (3) and (WFF2), as required

Notational convention. To make reading wff easier, I shall omit the outer
brackets and also the brackets associated with ¬.

Examples 1.2.2.

1. ¬p ∨ q means ((¬p) ∨ q).

2. ¬p→ (q∨r) means ((¬p)→ (q∨r)) and is different from ¬((p→ q)∨r).

I tend to bracket fairly heavily but many books on logic use fewer brackets
and arrange the connectives in a hierarchy:

¬,∧,∨,→,↔

from ‘stickiest’ to ‘least sticky’. It pays to check what conventions an author
is using.

The collection of wff forms an example of a formal language. This consists
of an underlying alphabet which in this case is

p, q, r, . . . , p1, p2, p3, . . .¬,∧,∨,⊕,→,↔, (, )

We are interested in strings over this alphabet (meaning ordered sequences
of symbols from the alphabet) and finally there is a context-free grammar,
also known as Backus-Knaur form (BNF), which tells us which strings are
wff: this is essentially given by our definition of wff above.

There is a graphical way of representing wff that involves trees. A tree is
a data-structure consisting of circles called nodes or vertices joined by lines
called edges such that there are no closed paths of distinct lines. In addition,
the vertices are organized hierarchically. One vertex is singled out and called
the root and is placed at the top. The vertices are arranged in levels so that
vertices at the same level cannot be joined by an edge. The vertices at the
bottom are called leaves. The picture below is an example of a tree with the
leaves being indicated by the filled circles. The root is the vertex at the top.
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A parse tree of a wff is constructed as follows. The parse tree of an atom p
is the tree

p

Now let A and B be wff. Suppose that A has parse tree TA and B has parse
tree TB. Let ∗ denote any of the binary propositional connectives. Then
A ∗B has the parse tree

∗

TA TB

This is accomplished by joining the roots of TA and TB to a new root labelled
by ∗. The parse tree for ¬A is

¬

TA

This is accomplished by joining the root of TA to a new root labelled ¬.
Parse trees are a way of representing wff without using brackets though we
pay the price of having to work in two dimensions rather than one.

We shall see in Chapter 2 that parse trees are in fact useful in
circuit design.
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Example 1.2.3. The parse tree for ¬(p ∨ q) ∨ r is

∨

¬

∨

p q

r

Example 1.2.4. The parse tree for ¬¬((p→ p)↔ p) is

¬

¬

↔

→

p p

p

1.3 Semantics of propositional logic

An atomic statement is assumed to have one of two truth values: true (T) or
false (F). We now consider the truth values of those compound statements
that contain exactly one of the Boolean connectives. The following truth
tables define the meaning of the Boolean connectives.
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p ¬p
T F
F T

p q p ∧ q
T T T
T F F
F T F
F F F

p q p ∨ q
T T T
T F T
F T T
F F F

p q p↔ q
T T T
T F F
F T F
F F T

p q p⊕ q
T T F
T F T
F T T
F F F

Then there is the one that everyone gets wrong

p q p→ q
T T T
T F F
F T T
F F T

The meanings of the logical connectives above are suggested by their mean-
ings in everyday language, but are not the same as them. Think of our
definitions as technical definitions for technical purposes only.

It is vitally important in what follows that you learn the above
truth tables by heart.

Truth tables can also be used to work out the truth values of compound
statements. Let A be a compound statement consisting of atoms p1, . . . , pn.
A specific truth assignment to p1, . . . , pn leads to a truth value being assigned
to A itself by using the definitions above.

Example 1.3.1. Let A = (p ∨ q)→ (r ↔ ¬s). A truth assignment is given
by the following table

p q r s
T F F T

If we insert these values into our wff we get

(T ∨ F )→ (F ↔ ¬T ).

We use our truth tables above to evaluate this expression in stages

T → (F ↔ F ), T → T, T.

Lemma 1.3.2. If the compound proposition A consists of n atoms then there
are 2n possible truth assignments.
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We may draw up a table, also called a truth table, whose rows consist of
all possible truth assignments along with the corresponding truth value of A.

We shall use the following pattern of assignments of truth values:

. . . T T T

. . . T T F

. . . T F T

. . . T F F

. . . F T T

. . . F T F

. . . F F T

. . . F F F

. . . . . . . . . . . .

Examples 1.3.3. Here are some examples of truth tables

1. The truth table for A = ¬(p→ (p ∨ q)).

p q p ∨ q p→ (p ∨ q) A
T T T T F
T F T T F
F T T T F
F F F T F

2. The truth table for B = (p ∧ (p→ q))→ q.

p q p→ q p ∧ (p→ q) B
T T T T T
T F F F T
F T T F T
F F T F T
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3. The truth table for C = (p ∨ q) ∧ ¬r.

p q r p ∨ q ¬r C
T T T T F F
T T F T T T
T F T T F F
T F F T T T
F T T T F F
F T F T T T
F F T F F F
F F F F T F

4. Given the wff (p ∧ ¬q) ∧ r we could draw up a truth table but in this
case we can easily figure out how it behaves. It is true if and only if p is
true, ¬q is true and r is true. Thus the following is a truth assignment
that makes the wff true

p q r
T F T

and the wff is false for all other truth assignments. We shall generalize
this example later.

Important definitions

• An atom or the negation of an atom is called a literal.

• We say that a wff A built up from the atomic propositions p1, . . . , pn is
satisfiable if there is some assignment of truth values to the atoms in
A which gives A the truth value true.

• If A1, . . . , An are wff we say they are (jointly) satisfiable if there is a
single truth assignment that makes all of A1, . . . , An true. It is left as
en exercise to show that A1, . . . , An are jointly satisfiable if and only if
A1 ∧ . . . ∧ An is satisfiable.

• If a wff is always true we say that it is a tautology. If A is a tautology
we shall write

� A.

The symbol � is called the semantic turnstile.
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• If a wff is always false we say it is a contradiction. If A is a contradiction
we shall write

A � .

Observe that contradictions are on the left or sinister side of the se-
mantic turnstile.

• If a wff is sometimes true and sometimes false we refer to it as a con-
tingency.

• A truth assignment that makes a wff true is said to satisfy the wff
otherwise it is said to falsify the wff.

A very important problem in PL can now be stated.

The satisfiability problem (SAT)
Given a wff decide whether there is some truth assign-
ment to the atoms that makes the wff take the value
true.

I shall discuss this problem in more detail later and explain why it is so
important.

The following examples illustrate an idea that we shall develop in the
next section.

Example 1.3.4. Compare the true tables of p→ q and ¬p ∨ q.

p q p→ q
T T T
T F F
F T T
F F T

p q ¬p ¬p ∨ q
T T F T
T F F F
F T T T
F F T T

They are clearly the same.

Example 1.3.5. Compare the true tables of p↔ q and (p→ q) ∧ (q → p).

p q p↔ q
T T T
T F F
F T F
F F T

p q p→ q q → p (p→ q) ∧ (q → p)
T T T T T
T F F T F
F T T F F
F F T T T
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They are clearly the same.

Example 1.3.6. Compare the truth tables of p⊕ q and (p ∨ q) ∧ ¬(p ∧ q).

p q p⊕ q
T T F
T F T
F T T
F F F

p q p ∨ q p ∧ q ¬(p ∧ q) (p ∨ q) ∧ ¬(p ∧ q)
T T T T F F
T F T F T T
F T T F T T
F F F F T F

They are clearly the same.

It is important to remember that all questions in PL can be settled,
at least in principle, by using truth tables.

1.4 Logical equivalence

It can happen that two different-looking statements A and B can have the
same truth table. This means they have the same meaning. We saw examples
of this in Examples 1.3.4, 1.3.5 and 1.3.6. In that case, we say that A is
logically equivalent to B written A ≡ B. It is important to remember that
≡ is not a logical connective. It is a relation between wff.

Examples 1.4.1.

1. p→ q ≡ ¬p ∨ q.

2. p↔ q ≡ (p→ q) ∧ (q → p).

3. p⊕ q ≡ (p ∨ q) ∧ ¬(p ∧ q).

Observe that A and B do not need to have the same atoms but the truth
tables must be constructed using all the atoms that occur in either A or B.
Here is an example.

Example 1.4.2. We prove that p ≡ p ∧ (q ∨ ¬q). We construct two truth
tables with atoms p and q in both cases.

p q p
T T T
T F T
F T F
F F F

p q p ∧ (q ∨ ¬q)
T T T
T F T
F T F
F F F
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The two truth tables are the same and so the two wff are logically equivalent.

The following result is the first indication of the important role that
tautologies play in propositional logic. You can also take this as the definition
of logical equivalence.

Proposition 1.4.3. Let A and B be statements. Then A ≡ B if and only if
A↔ B is a tautology if and only if � A↔ B.

Proof. We use the fact that X ↔ Y is true when X and Y have the same
truth value.

Let the atoms that occur in either A or B be p1, . . . , pn.
Let A ≡ B and suppose that A↔ B were not a tautology. Then there is

some assignment of truth values to the atoms p1, . . . , pn such that A and B
have different truth values. But this would imply that there was a row of the
truth table of A that was different from the corresponding row of B. This
contradicts the fact that A and B have the same truth tables. It follows that
A↔ B is a tautology.

Let A ↔ B be a tautology and suppose that A and B have truth tables
that differ. This implies that there is a row of the truth table of A that is
different from the corresponding row of B. Then there is some assignment of
truth values to the atoms p1, . . . , pn such that A and B have different truth
values. But this would imply that A↔ B is not a tautology.

Example 1.4.4. Prove that � p ↔ (p ∧ (q ∨ ¬q)). This implies that p ≡
p ∧ (q ∨ ¬q).

p q p ∧ (q ∨ ¬q) p↔ (p ∧ (q ∨ ¬q))
T T T T
T F T T
F T F T
F F F T

The following theorem lists some important logical equivalences that you
will be asked to prove in Exercises 2.

Theorem 1.4.5.

1. ¬¬p ≡ p. Double negation.

2. p ∧ p ≡ p and p ∨ p ≡ p. Idempotence.
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3. (p ∧ q) ∧ r ≡ p ∧ (q ∧ r) and (p ∨ q) ∨ r ≡ p ∨ (q ∨ r). Associativity.

4. p ∧ q ≡ q ∧ p and p ∨ q ≡ q ∨ p. Commutativity.

5. p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r) and p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r).
Distributivity.

6. ¬(p ∧ q) ≡ ¬p ∨ ¬q and ¬(p ∨ q) ≡ ¬p ∧ ¬q. De Morgan’s laws.

7. p ∨ (p ∧ q) ≡ p and p ∧ (p ∨ q) ≡ p. Absorption.

There are some interesting patterns in the above results that involve the
interplay between ∧ and ∨:

p ∧ p ≡ p p ∨ p ≡ p
(p ∧ q) ∧ r ≡ p ∧ (q ∧ r) (p ∨ q) ∨ r ≡ p ∨ (q ∨ r)

p ∧ q ≡ q ∧ p p ∨ q ≡ q ∨ p

and

p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r) p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)
¬(p ∧ q) ≡ ¬p ∨ ¬q ¬(p ∨ q) ≡ ¬p ∧ ¬q
p ∨ (p ∧ q) ≡ p p ∧ (p ∨ q) ≡ p

There are some useful consequences of the above theorem.

• The fact that (p ∧ q) ∧ r ≡ p ∧ (q ∧ r) means that we can write simply
p ∧ q ∧ r without ambiguity because the two ways of bracketing this
expression lead to the same truth table. It can be shown that as a
result we can write expressions like p1∧p2∧p3∧p4 (and so on) without
brackets because it can be proved that however we bracket such an
expression leads to the same truth table. What we have said for ∧ also
applies to ∨.

• The fact that p∧ q ≡ q∧p implies that the order in which we carry out
a sequence of conjunctions does not matter. What we have said for ∧
also applies to ∨.

• The fact p∧p ≡ p means that we can eliminate repeats in conjunctions
of one and the same atom. What we have said for ∧ also applies to ∨.
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Example 1.4.6. By the results above

p ∧ q ∧ p ∧ q ∧ p ≡ p ∧ q.

It is important not to overgeneralize the above results as the following
two examples show.

Example 1.4.7. Observe that p→ q 6≡ q → p since the truth assignment

p q
T F

makes the LHS equal to F but the RHS equal to T .

Example 1.4.8. Observe that (p → q) → r 6≡ p → (q → r) since the truth
assignment

p q r
F F F

makes the LHS equal to F but the RHS equal to T .

Our next example is an application of some of our results.

Example 1.4.9. We have defined a binary propositional connective ⊕ such
that p ⊕ q is true when exactly one of p or q is true. Our goal now is to
extend this to three atoms. Define xor(p, q, r) to be true when exactly one of
p, q or r is true, and false in all other cases. We can describe this connective
in terms of the ones already defined. I claim that

xor(p, q, r) = (p ∨ q ∨ r) ∧ ¬(p ∧ q) ∧ ¬(p ∧ r) ∧ ¬(q ∧ r).

This can easily be verified by constructing the truth table of the RHS. Put

A = (p ∨ q ∨ r) ∧ ¬(p ∧ q) ∧ ¬(p ∧ r) ∧ ¬(q ∧ r).

p q r p ∨ q ∨ r ¬(p ∧ q) ¬(p ∧ r) ¬(q ∧ r) A

T T T T F F F F
T T F T F T T F
T F T T T F T F
T F F T T T T T
F T T T T T F F
F T F T T T T T
F F T T T T T T
F F F F T T T F
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The following properties of logical equivalence will be important when we
come to show how Boolean algebras are related to PL in Chapter 2.

Proposition 1.4.10. Let A, B and C be wff.

1. A ≡ A.

2. If A ≡ B then B ≡ A.

3. If A ≡ B and B ≡ C then A ≡ C.

4. If A ≡ B then ¬A ≡ ¬B.

5. If A ≡ B and C ≡ D then A ∧ C ≡ B ∧D.

6. If A ≡ B and C ≡ D then A ∨ C ≡ B ∨D.

Proof. By way of an example, I shall prove (6). We are given that A ≡ B
and C ≡ D and we have to prove that A ∨ C ≡ B ∨D. That is we need to
prove that from � A↔ B and � C ↔ D we can deduce � (A∨C)↔ (B∨D).
Suppose that (A ∨ C) ↔ (B ∨ D) is not a tautology. Then there is some
truth assignment to the atoms that makes A ∨ C true and B ∨ D false or
vice versa. I shall just deal with the first case here. Suppose that A ∨ C is
true and B ∨D is false. Then both B and D are false and at least one of A
and C is true. If A is true then this contradicts A ≡ B, and if C is true then
this contradicts C ≡ D. It follows that A ∨ C ≡ B ∨D, as required.

Logical equivalence can be used to simplify complicated compound state-
ments as follows. Let A be a compound statement which contains occurrences
of the wff X. Suppose that X ≡ Y where Y is simpler than X. Let A′ be
the same as A except that some or all occurrences of X are replaced by Y .
Then A′ ≡ A but A′ is simpler than A.

Example 1.4.11. Let

A = p ∧ (q ∨ ¬q) ∧ q ∧ (r ∨ ¬r) ∧ r ∧ (p ∨ ¬p).

But
p ∧ (q ∨ ¬q) ≡ p and q ∧ (r ∨ ¬r) ≡ q and r ∧ (p ∨ ¬p) ≡ r

and so
A ≡ p ∧ (q ∧ r).
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Examples 1.4.12. Here are some examples of using known logical equiva-
lences to show that two wff are logically equivalent.

1. We show that p→ q ≡ ¬q → ¬p.

¬q → ¬p ≡ ¬¬q ∨ ¬p by Example 4.1(1)

≡ q ∨ ¬p by double negation

≡ ¬p ∨ q by commutativity

≡ p→ q by Example 4.1(1).

2. We show that (p→ q)→ q ≡ p ∨ q.

(p→ q)→ q ≡ ¬(p→ q) ∨ q by Example 4.1(1)

≡ ¬(¬p ∨ q) ∨ q by Example 4.1(1)

≡ (¬¬p ∧ ¬q) ∨ q by de Morgan

≡ (p ∧ ¬q) ∨ q by double negation

≡ (p ∨ q) ∧ (¬q ∨ q) by distributivity

≡ p ∨ q since � ¬q ∨ q.

3. We show that p→ (q → r) ≡ (p ∧ q)→ r.

p→ (q → r) ≡ ¬p ∨ (q → r) by Example 4.1(1)

≡ ¬p ∨ (¬q ∨ r) by Example 4.1(1)

≡ ¬(p ∧ q) ∨ r by associativity and de Morgan

≡ (p ∧ q)→ r by Example 4.1(1).

4. We show that p→ (q → r) ≡ q → (p→ r).

p→ (q → r) ≡ ¬p ∨ (q → r) by Example 4.1(1)

≡ ¬p ∨ (¬q ∨ r) by Example 4.1(1)

≡ (¬p ∨ ¬q) ∨ r by associativity

≡ (¬q ∨ ¬p) ∨ r by commutativity

≡ ¬q ∨ (¬p ∨ r) by associativity

≡ ¬q ∨ (p→ r) by Example 4.1(1)

≡ q → (p→ r) by Example 4.1(1).
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5. We show that (p→ q) ∧ (p→ r) ≡ p→ (q ∧ r).

(p→ q) ∧ (p→ r) ≡ (¬p ∨ q) ∧ (¬p ∨ r) by Example 4.1(1)

≡ ¬p ∨ (q ∧ r) by distributivity

≡ p→ (q ∧ r) by Example 4.1(1).

The next example is a little different.

Example 1.4.13. We shall prove that � p → (q → p) by using logical
equivalences.

p→ (q → p) ≡ ¬p ∨ (¬q ∨ p) by Example 4.1(1)

≡ (¬p ∨ p) ∨ ¬q by associativity and commutativity

≡ T since � ¬p ∨ p.

Finally, here is an attempt to explain the rationale behind the definition
of →.

Example 1.4.14. I shall try to show how the truth table of → is forced
upon us if we make some reasonable assumptions.

p q p→ q
T T u
T F v
F T w
F F x

We pretend that we do not yet know the values of u, v, w, x. We now make
the following assumptions.

1. The truth table for ↔ is known.

2. Whatever the truth table of → is we should have that

p↔ q ≡ (p→ q) ∧ (q → p).

3. The truth table for → is different from that of ↔.

4. T → F must be false.
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In the light of the above assumptions, we have the following.

p q p→ q q → p (p→ q) ∧ (q → p)
T T u u u = T
T F v w v ∧ w = F
F T w v w ∧ v = F
F F x x x = T

Thus u = T and x = T . We cannot have w = v = F because then → would
have the same truth table as ↔. It follows that v and w must have opposite
truth values. But then v = F and so w = T .

Exercises 2

These cover Sections 1.1, 1.2, 1.3 and 1.4.

1. Construct parse trees for the following wff.

(a) (¬p ∨ q)↔ (q → p).

(b) p→ ((q → r)→ ((p→ q)→ (p→ r))).

(c) (p→ ¬p)↔ ¬p.
(d) ¬(p→ ¬p).
(e) (p→ (q → r))↔ ((p ∧ q)→ r).

2. Determine which of the following wff are satisfiable. For those which
are, find all the assignments of truth values to the atoms which make
the wff true.

(a) (p ∧ ¬q)→ ¬r.
(b) (p ∨ q)→ ((p ∧ q) ∨ q).
(c) (p ∧ q ∧ r) ∨ (p ∧ q ∧ ¬r) ∨ (¬p ∧ ¬q ∧ ¬r).

3. Determine which of the following wff are tautologies by using truth
tables.
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(a) (¬p ∨ q)↔ (q → p).

(b) p→ ((q → r)→ ((p→ q)→ (p→ r))).

(c) (p→ ¬p)↔ ¬p.
(d) ¬(p→ ¬p).
(e) (p→ (q → r))↔ ((p ∧ q)→ r).

4. Prove the following logical equivalences using truth tables.

(a) ¬¬p ≡ p.

(b) p ∧ p ≡ p and p ∨ p ≡ p. Idempotence.

(c) (p∧ q)∧ r ≡ p∧ (q∧ r) and (p∨ q)∨ r ≡ p∨ (q∨ r). Associativity.

(d) p ∧ q ≡ q ∧ p and p ∨ q ≡ q ∨ p. Commutativity.

(e) p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r) and p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r).
Distributivity.

(f) ¬(p ∧ q) ≡ ¬p ∨ ¬q and ¬(p ∨ q) ≡ ¬p ∧ ¬q. De Morgan’s laws.

5. Let F stand for any wff which is a contradiction and T stand for any
wff which is a tautology. Prove the following.

(a) p ∨ ¬p ≡ T .

(b) p ∧ ¬p ≡ F .

(c) p ∨ F ≡ p.

(d) p ∨ T ≡ T .

(e) p ∧ F ≡ F .

(f) p ∧ T ≡ p.

6. Prove the following by using known logical equivalences (rather than
using truth tables).

(a) (p→ q) ∧ (p ∨ q) ≡ q.

(b) (p ∧ q)→ r ≡ (p→ r) ∨ (q → r).

(c) p→ (q ∨ r) ≡ (p→ q) ∨ (p→ r).
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7. We defined only 5 binary connectives, but there are in fact 16 possible
ones. The tables below show all of them.

p q ◦1 ◦2 ◦3 ◦4 ◦5 ◦6 ◦7 ◦8
T T T T T T T T T T
T F T T T T F F F F
F T T T F F T T F F
F F T F T F T F T F

p q ◦9 ◦10 ◦11 ◦12 ◦13 ◦14 ◦15 ◦16
T T F F F F F F F F
T F T T T T F F F F
F T T T F F T T F F
F F T F T F T F T F

(a) Express each of the connectives from 1 to 8 in terms of ¬, →, p,
q and brackets only.

(b) Express each of the connectives from 9 to 16 in terms of ¬, ∧, p,
q and brackets only.

1.5 Two examples: PL as a ‘programming

language’

PL can seem like a toy and some of our examples don’t help this impression,
but in fact it has serious applications independently of its being the founda-
tion of the more general first-order logic that we shall study in Chapter 3. In
this section, we shall analyze a couple of examples of simplified Sudoku-type
problem in terms of PL. These illustrate the ideas needed to analyse full Su-
doku in terms of PL. In fact, many important problems in mathematics and
computer science can be regarded as instances of the satisfiability problem.
We shall say more about this in Section 1.8.

Example 1

To understand new ideas always start with the simplest examples. So,
here is a childishly simple Sudoku puzzle. Consider the following grid:
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where the small squares are called cells. The puzzle consists in filling the
cells with numbers according to the following two constraints.

(C1) Each cell contains exactly one of the numbers 1 or 2.

(C2) If two cells occur in the same row then the numbers they contain must
be different.

There are obviously two solutions to this puzzle

1 2 and 2 1

I shall now show how this puzzle can be encoded by a wff of PL. Please
note that I shall solve it in a way that generalizes so I do not claim that the
solution in this case is the simplest. We first have to decide what the atoms
are. To define them we shall label the cells as follows

c11 c12

We need four atoms that are defined as follows.

• p is the statement that cell c11 contains the number 1.

• q is the statement that cell c11 contains the number 2.

• r is the statement that cell c12 contains the number 1.

• s is the statement that cell c12 contains the number 2.

For example, if p is true then the grid looks like this

1 ?

where the ? indicates that we don’t care what is there. Consider now the
following wff.

A = (p⊕ q) ∧ (r ⊕ s) ∧ (p⊕ r) ∧ (q ⊕ s).

I now describe what each of the parts of this wff are doing.

• p⊕ q is true precisely when cell c11 contains a 1 or a 2 but not both.

• r ⊕ s is true precisely when cell c12 contains a 1 or a 2 but not both.
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• p⊕ r is true precisely when the number 1 occurs in exactly one of the
cells c11 and c12.

• q ⊕ s is true precisely when the number 2 occurs in exactly one of the
cells c11 and c12.

Here is the important consequence of all this:

It follows that A is satisfiable precisely when the puzzle
can be solved. In addition, each satisfying truth assign-
ment can be used to read off a solution to the original
puzzle.

Here is the truth table for A.

p q r s A

T T T T F
T T T F F
T T F T F
T T F F F
T F T T F
T F T F F
T F F T T
T F F F F
F T T T F
F T T F T
F T F T F
F T F F F
F F T T F
F F T F F
F F F T F
F F F F F

We observe first that the wff A is satisfiable and so the original problem can
be solved. Second, here are the two satisfying truth assignments.

p q r s

T F F T
F T T F
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The first truth assignment tells us that c11 = 1 and c12 = 2, whereas the
second truth assignment tells us that c11 = 2 and c12 = 1. These are, of
course, the two solutions we saw earlier.

Example 2

We now describe a slightly more complex example and generalize what
we did above. To do this, I introduce some notation. Define

n∨
i=1

Ai = A1 ∨ . . . ∨ An

and
n∧

i=1

Ai = A1 ∧ . . . ∧ An.

Consider the following slightly larger grid:

3
2

where again the small squares are called cells. Some cells contain numbers
at the beginning and these must not be changed. Our task is to fill the
remaining cells with numbers according to the following constraints.

(C1) Each cell contains exactly one of the numbers 1 or 2 or 3.

(C2) If two cells occur in the same row then the numbers they contain must
be different.

(C3) If two cells occur in the same column then the numbers they contain
must be different.

It is very easy to solve this problem satisfying these constraints to obtain

3 2 1
1 3 2
2 1 3
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I shall now show how this problem can be represented in PL and how its
solution is a special case of the satisfiability problem. First of all, I shall
label the cells in the grid as follows:

c11 c12 c13
c21 c22 c23
c31 c32 c33

The label cij refers to the cell in row i and column j. PL requires atomic
statements. To model this problem we shall need 27 atomic statements cijk
where 1 ≤ i ≤ 3 and 1 ≤ j ≤ 3 and 1 ≤ k ≤ 3. The atomic statement cijk is
defined as follows

cijk = the cell in row i and column j contains the number k.

For example, the atomic statement c113 is true when the grid is as follows:

3 ? ?
? ? ?
? ? ?

where the ?s mean that we don’t know what is in that cell. In the above
case, the atomic statements c111 and c112 are both false.

We shall now construct a wff A from the above 27 atoms such that A
is satisfiable if and only if the above problem can be solved and such that
a satisfying truth assignment can be used to read off a solution. I shall
construct A in stages.

• Define I = c113 ∧ c232. This wff is true precisely when the grid looks
like this

3 ? ?
? ? 2
? ? ?

• Each cell must contain exactly one of the numbers 1, 2, 3. For each
1 ≤ i ≤ 3 and 1 ≤ j ≤ 3 the wff

xor(cij1, cij2, cij3)
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is true when the cell in row i and column j contains exactly one of
the numbers 1, 2, 3. Put B equal to the conjunction of all of these wff.
Thus

B =
i=3∧
i=1

j=3∧
j=1

xor(cij1, cij2, cij3).

Then B is true precisely when each cell of the grid contains exactly one
of the numbers 1, 2, 3.

• In each row, each of the numbers 1, 2, 3 must occur exactly once. For
each 1 ≤ i ≤ 3, define

Ri = xor(ci11, ci21, ci31) ∧ xor(ci12, ci22, ci32) ∧ xor(ci13, ci23, ci33).

Then Ri is true when each of the numbers 1, 2, 3 occurs exactly once
in the cells in row i. Define R =

∧i=3
i=1Ri.

• In each column, each of the numbers 1, 2, 3 must occur exactly once.
For each 1 ≤ j ≤ 3, define

Cj = xor(c1j1, c2j1, c3j1) ∧ xor(c1j2, c2j2, c3j2) ∧ xor(c1j3, c2j3, c3j3).

Then Cj is true when each of the numbers 1, 2, 3 occurs exactly once
in the cells in column j. Define C =

∧i=3
j=1Ci.

• Put A = I ∧ B ∧ R ∧ C. Then by construction A is satisfiable pre-
cisely when the original problem is satisfiable and a satisfying truth
assignment to the atoms can be used to read off a solution as follows.
Precisely the following atoms are true:

c113, c122, c131, c211, c223, c232, c312, c321, c333

and all the remainder are false.

It is now easy in principle to generalize our two examples above and show
that a full-scale Sudoku puzzle can be solved in the same way. This consists
of a grid with 9×9 cells and each cell can contain exactly one of the numbers
1, 2, . . . , 9 satisfying certain constraints. It follows that to describe this puzzle
by means of a wff in PL we shall need 9× 9× 9 = 729 atoms. This is left as
an exercise.
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Remark 1.5.1. Don’t be perturbed by the number of atoms in the above
examples nor by the amount of labour needed to write down the wff A. The
point is that the problem can be faithfully represented by a wff in PL and
that the solution of the problem is achieved via a satisfying assignment of
the atoms. We shall place this example in a more general context we we
discuss ‘P = NP?’ later on. In many ways, PL is like an assembly language
and it is perfectly adapted to studying a particular class of problems that
are widespread and important.

1.6 Adequate sets of connectives

We defined our version of PL using the following six connectives

¬,∧,∨,→,↔,⊕.

This is not a unique choice: for example, many books on logic do not include
⊕. In this section, we shall explore what is actually neded to define PL.

It is easy to show that

p⊕ q ≡ ¬(p↔ q).

We have already proved that

p↔ q ≡ (p→ q) ∧ (q → p)

and also that

p→ q ≡ ¬p ∨ q.

We have therefore proved the following.

Proposition 1.6.1. Every wff in PL is logically equivalent to one that uses
only the logical connectives ¬, ∨ and ∧.

Although it would be more efficient to use only the above three logical
connectives, it would be less user-friendly. Significantly, those books that do
not take ⊕ as a basic logical connective are not sacrificing any expressive
power.

At this point, we introduce some terminology. We say that a set of logical
connectives is adequate if every wff is logically equivalent to a wff that uses
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only logical connectives from that set. In these terms, we proved above that
the connectives ¬, ∨, ∧ form an adequate set.

We can if we want be even more miserly in the number of logical con-
nectives we use. The following two logical equivalences can be proved using
double negation and de Morgan.

• p ∨ q ≡ ¬(¬p ∧ ¬q).

• p ∧ q ≡ ¬(¬p ∨ ¬q).

From these we can deduce the following.

Proposition 1.6.2.

1. The connectives ¬ and ∧ together form an adequate set.

2. The connectives ¬ and ∨ together form an adequate set.

Example 1.6.3. We show that the following wff are equivalent to wff using
only the connectives ¬ and ∧.

1. p ∨ q ≡ ¬(¬p ∧ ¬q).

2. p→ q ≡ ¬p ∨ q ≡ ¬(¬¬p ∧ ¬q) ≡ ¬(p ∧ ¬q).

3. p↔ q ≡ (p→ q) ∧ (q → p) ≡ ¬(p ∧ ¬q) ∧ ¬(q ∧ ¬p).

At this point, you might wonder if we can go one better. Indeed, we can
but we have to define some new binary connectives. Define

p ↓ q = ¬(p ∨ q)

called nor. Define

p | q = ¬(p ∧ q)

called nand.

Proposition 1.6.4. The binary connectives ↓ and | on their own are ade-
quate.
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Proof. We prove first that ↓ is adequate on its own. Observe that

¬p ≡ ¬(p ∨ p) ≡ p ↓ p

and

p ∧ q ≡ ¬¬p ∧ ¬¬q ≡ ¬(¬p ∨ ¬q) ≡ (¬p) ↓ (¬q) ≡ (p ↓ p) ↓ (q ↓ q).

But since ¬ and ∧ form an adequate set of connectives we can now construct
everything using ↓ alone.

We now prove that | is adequate on its own. Observe that

¬p ≡ ¬(p ∧ p) ≡ p | p

and

p ∨ q ≡ ¬¬p ∨ ¬¬q ≡ ¬(¬p ∧ ¬q) ≡ (¬p) | (¬q) ≡ (p | p) | (q | q).

It can be proved that these are the only binary connectives which are
adequate on their own. It would be possible to develop the whole of PL
using for example just nor, and some mathematicians have done just that.
But it renders PL truly non-user-friendly.

Example 1.6.5. We find a wff logically equivalent to p → q that uses only
nors.

p→ q ≡ ¬p ∨ q
≡ ¬¬(¬p ∨ q)
≡ ¬(¬(¬p ∨ q))
≡ ¬(¬p ↓ q)
≡ ¬((p ↓ p) ↓ q)
≡ ((p ↓ p) ↓ q) ↓ ((p ↓ p) ↓ q.)

Truth functions

We now have the apparatus we need to prove a result that is significant
in circuit design. Let A be a wff with n atoms p1, . . . , pn. The truth table
for A has 2n rows, where each row represents a specific assignment of truth
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values to each of p1, . . . , pn. The final column of the truth table contains the
truth value assumed by A for each of these 2n truth assignments.

A truth function is any table with rows all 2n possible truth values and an
output column which only takes the values T or F . There is no implication
in the definition of a truth function that it need be the truth table of a wff.
The following is an example of a truth function.

T T T T
T T F F
T F T F
T F F T
F T T T
F T F F
F F T F
F F F F

We now come to our first major result.

Theorem 1.6.6 (Realization of truth functions). For each truth function
with 2n rows there is a wff with n atoms whose truth table is the given truth
function.

Proof. We shall prove this result in three steps constructing a wff A.
Step 1. Suppose that the truth function always outputs F . Define

A = (p1 ∧ ¬p1) ∧ . . . ∧ pn.

Then A has a truth table with 2n rows that always outputs F .
Step 2. Suppose that the truth function outputs T exactly once. Let

v1, . . . , vn, where vi = T or F , be the assignment of truth values which yields
the output T . Define a wff A as follows. It is a conjunction of exactly one
of p1 or ¬p1, of p2 or ¬p2, . . . , of pn or ¬pn where pi is chosen if vi = T and
¬pi is chosen if vi = F . I shall call A a basic conjunction corresponding to
the pattern of truth values v1, . . . , vn. The truth table of A is the given truth
function.

Step 3. Suppose that we are given now an arbitrary truth function not
covered in steps 1 and 2 above. We construct a wff A whose truth table is
the given truth function by taking a disjunction of all the basic conjunctions
constructed from each row of the truth function that outputs T .
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The proof of the above theorem is best explained by means of an example.

Example 1.6.7. We construct a wff that has as truth table the following
truth function.

T T T T (1)
T T F F
T F T F
T F F T (2)
F T T T (3)
F T F F
F F T F
F F F F

We need only consider the rows that output T , which I have highlighted.
I have also included a reference number that I shall use below. The basic
conjunction corresponding to row (1) is

p ∧ q ∧ r.

The basic conjunction corresponding to row (2) is

p ∧ ¬q ∧ ¬r.

The basic conjunction corresponding to row (3) is

¬p ∧ q ∧ r.

The disjunction of these basic conjunctions is

A = (p ∧ q ∧ r) ∨ (p ∧ ¬q ∧ ¬r) ∨ (¬p ∧ q ∧ r).

You should check that the truth table of A is the truth function given above.

1.7 Normal forms

A normal form is a particular way of writing a wff. We begin with a normal
form that is a stepping stone to two others that are more important.

Negation normal form (NNF)
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A wff is in negation normal form (NNF) if it is constructed using only ∧,
∨ and literals. Recall that a literal is either an atom or the negation of an
atom.

Proposition 1.7.1. Every wff is logically equivalent to a wff in NNF.

Proof. Let A be a wff in PL. First, replace any occurrences of x ⊕ y by
¬(x↔ y). Second, replace any occurrences of x↔ y by (x→ y) ∧ (y → x).
Third, replace all occurrences of x→ y by ¬x ∨ y. Fourth, use de Morgan’s
laws to push all occurrences of negation through brackets. Finally, use double
negation to ensure that only literals occur.

Example 1.7.2. We convert ¬(p → (p ∧ q)) into NNF using the method
outlined in the proof of the above result.

¬(p→ (p ∧ q)) ≡ ¬(¬p ∨ (p ∧ q))
≡ ¬¬p ∧ ¬(p ∧ q)
≡ ¬¬p ∧ (¬p ∨ ¬q)
≡ p ∧ (¬p ∨ ¬q).

Disjunctive normal form (DNF)

We now come to the first of the two important normal forms. A wff
that can be written as a disjunction of one of more terms each of which is a
conjunction of one or more literals is said to be in disjunctive normal form
(DNF). Thus a wff in DNF has the following schematic shape

(∧ literals) ∨ . . . ∨ (∧ literals).

Examples 1.7.3. Some special cases of DNF are worth highlighting because
they often cause confusion.

1. A single atom p is in DNF.

2. A term such as (p ∧ q ∧ ¬r) is in DNF.

3. The expression p ∨ q is in DNF. You should think of it as (p) ∨ (q).

Proposition 1.7.4. Every wff is logically equivalent to one in DNF.
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Proof. Let A be a wff. Construct the truth table for A. Now apply Theo-
rem 1.6.6. The wff that results is in DNF and logically equivalent to A.

The method of proof used above can be used as a method for construct-
ing DNF though it is a little laborious. Another method is to use logical
equivalences. Let A be a wff. First convert A to NNF and then if necessary
use the distributive laws to convert to a wff which is in DNF.

Example 1.7.5. We show how to convert ¬(p→ (p ∧ q)) into DNF using a
sequence of logical equivalences. The first step is to replace →. We use the
fact that x→ y ≡ ¬x∨y. This gives us ¬(¬p∨(p∧q)). Now use de Morgan’s
laws to push negation inside the brackets. This yields ¬¬p ∧ ¬(p ∧ q) and
then ¬¬p ∧ (¬p ∨ ¬q). We now apply double negation to get p ∧ (¬p ∨ ¬q).
This is in NNF. Finally, we apply one of the distributive laws to get the ∨
out of the brackets. This yields (p ∧ ¬p) ∨ (p ∧ ¬q). This wff is in DNF and

¬(p→ (p ∧ q)) ≡ (p ∧ ¬p) ∨ (p ∧ ¬q).

Conjunctive normal form (CNF)

There is another normal form that plays an important role in the logic
programming language PROLOG. A wff is in conjunctive normal form (CNF)
if it is a conjunction of one or more terms each of which is a disjunction of
one or more literals. It therefore looks a bit like the reverse of (DNF).

(∨ literals) ∧ . . . ∧ (∨ literals).

Proposition 1.7.6. Every wff is logically equivalent to one in CNF.

Proof. Let A be our wff. Write ¬A in DNF by Proposition 1.7.4. Now negate
both sides of the logical equivalence and use double negation where necessary
to obtain a wff in CNF.

Example 1.7.7. A wff A has the following truth table.

T T T T
T T F T
T F T F
T F F T
F T T T
F T F F
F F T T
F F F T
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The truth table for ¬A is
T T T F
T T F F
T F T T
T F F F
F T T F
F T F T
F F T F
F F F F

It follows that
¬A ≡ (p ∧ ¬q ∧ r) ∨ (¬p ∧ q ∧ ¬r)

is the DNF for ¬A. Negating both sides we get

A ≡ (¬p ∨ q ∨ ¬r) ∧ (p ∨ ¬q ∨ r).

This is the CNF for A.

Sometimes using logical equivalences is more efficient.

Example 1.7.8. The wff (¬x ∧ ¬y) ∨ (¬x ∧ z) is in DNF. It can easily be
converted into CNF using one of the distributivity laws.

(¬x ∧ ¬y) ∨ (¬x ∧ z) ≡ ((¬x ∧ ¬y) ∨ ¬x) ∧ ((¬x ∧ ¬y) ∨ z)

≡ (¬x ∨ ¬x) ∧ (¬y ∨ ¬x) ∧ (¬x ∨ ¬z) ∧ (¬y ∧ z).

Exercises 3

These cover Sections 1.6 and 1.7.

1. Use known logical equivalences to transform each of the following wff
first into NNF and then into DNF.

(a) (p→ q)→ p.

(b) p→ (q → p).

(c) (q ∧ ¬p)→ p.
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(d) (p ∨ q) ∧ r.

(e) p→ (q ∧ r).

(f) (p ∨ q) ∧ (r → s).

2. Use known logical equivalences to transform each of the following into
CNF.

(a) (p→ q)→ p.

(b) p→ (q → p).

(c) (q ∧ ¬p)→ p.

(d) (p ∨ q) ∧ r.

(e) p→ (q ∧ r).

(f) (p ∨ q) ∧ (r → s).

3. Write p↔ (q ↔ r) in NNF.

4. The following truth table gives the semantics of three truth functions
(a), (b) and (c). In each case, find a wff whose truth table is equal to
the corresponding truth function.

p q r (a) (b) (c)
T T T T F T
T T F T T F
T F T T F T
T F F T T F
F T T F T T
F T F T T F
F F T T F T
F F F T F F

5. Show that p⊕ (q ⊕ r) ≡ (p⊕ q)⊕ r.

6. Do ¬ and → together form an adequate set of connectives?

7. Do ∨, ∧ and → together form an adequate set of connectives?
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1.8 P = NP?

I cannot in this course go in to the details of this question but I can at least
sketch out what it means and why it is important. The question whether
P is equal to NP is the first of the seven Millennium problems that were
posed by the Clay Mathematics Institute in 2000. Anyone who solves one
of these problems wins a million dollars. So far only one of these problems
has been solved: namely, the Poincaré Conjecture by Grigori Perelman who
turned down the prize money. The other six problems require advanced
mathematics just to understand what they are saying — except one. This is
the question of whether P is equal to NP. It is intelligible to anyone who
has taken a course in a subject called complexity theory that could easily be
taught to second year maths and CS students, for example. I shall begin this
sketch by explaining what we mean by P and NP.

How long does it take a program to solve a problem? As it stands this
is too vague to admit an answer so we need to make it more precise. For
concreteness, imagine a program that takes as input a whole number n and
produces as output either the result that ‘n is prime’ or ‘n is not prime’. So
if you input 10 to the program it would tell you it was not prime but if you
input 17 it would tell you that it was prime. Clearly, how long the program
takes to solve this question depends on how big the number is that you input.
A number with hundreds of digits is clearly going to take a lot longer for the
program to work than one with just a few digits. Thus to say how long a
program takes to solve a problem has to refer to the length of the input to
that program. Now for each input of a fixed length, say m, the program
might take varying amounts of time to produce an output. We agree to take
the longest amount of time over all inputs of length m as a measure of how
long it takes to process any input of length m. Of course, for many inputs of
length m the program may be faster, but there will be some input of length
m that takes the most time to process. The other issue we have to deal with
is what we mean by ‘time’. Your fancy MacBook Pro may be a lot faster
than my Babbage Imperial. So instead of time we count the number of basic
computational steps needed to transform input to output. It turns out that
we don’t really have to worry too much about what this means but it can
be made precise using Turing machines. Thus with each program we can try
to calculate its time complexity profile. This will be a function m 7→ f(m)
where m is the length of the input and f(m) is the maximum number of
steps needed to transform any input of size m into an output. Calculating
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the time complexity profile exactly of even simple programs requires a lot
of mathematical analysis, but fortunately we don’t need an exact answer
merely a good estimate. A program that has the time complexity profile
m 7→ am where a is a number is said to run in linear time, if the time
complexity profile is m 7→ am2 it is said to run in quadratic time, if the time
complexity profile is m 7→ am3 it is said to run in cubic time. More generally,
if the time complexity profile is m 7→ amn for some n it is said to run in
polynomial time. All the basic algorithms you learnt at school for adding,
subtracting, multiplying and dividing numbers run in polynomial time. We
define the class P to be all those problems that can be solved in polynomial
time. These are essentially nice problems with nice (meaning fast) programs
to solve them. What would constitute a nasty problem? This would be one
whose time complexity profile looked like m 7→ 2m. This is nasty because by
just increasing the size of the input by 1 doubles the amount of time needed
to solve the problem. We now isolate those nasty problems that have a nice
feature: that is, that any purported solution can be checked quickly, that is
in polynomial time. Such problems constitute the class of non-deterministic
polynomial times problems denoted by NP. A really nasty problem would
be one where it is even difficult just to check a purported solution.

Clearly, P is contained in NP but there is no earthly reason why they
should be equal. The problem is that currently (2016) no one has been able to
prove that they are not equal. In 1971, Stephen Cook came up with an idea
for resolving this question that shed new light on the nature of algorithms.
His idea was that inside NP there should be a nastiest problem with an
important, and ironically nice, property: if that problem could be shown to
be in P then everything in NP would also have to be in P thus showing
that P = NP. On the other hand, if it could be shown that this problem
wasn’t in P then we would have shown that P 6= NP. Thus Cook’s problem
would provide a sort of litmus-test for equality. Such a problem is called NP-
complete. Given that we don’t even know all the problems in NP Cook’s
idea might have sounded simply too good to be true. But in fact, he was
able to prove a specific problem to be NP-complete: (fanfare) that problem
is SAT — the satisfiability problem in PL. This probably all sounds very
mysterious but in fact once you start studying complexity theory the mystery
disappears. The reason that it is possible to prove that SAT is NP-complete
boils down to the fact that PL is a sufficiently rich language to describe
the behaviour of computers. Cook’s result, known as Cook’s theorem, is
remarkable enough and explains the central importance of the satisfiability
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in theoretical computers science. But there is more (no!). Thousands and
thousands of problems have been shown to be NP-complete and so equivalent
to SAT1. The travelling salesman problem is one well known example. I shall
describe another interesting one here: is a graph k-colourable? A graph
consists of vertices which are represented by circles and edges which are lines
joining the circles (here always joining different circles). Vertices joined by
an edge are said to be adjacent. The following is an example of a graph.

By a colouring of a graph we mean an assignment of colours to the vertices
so that adjacent vertices have different colours. By a k-colouring of a graph
we mean a colouring that uses at most k colours. Depending on the graph
and k that may or may not be possible. The following is a 3-colouring of the
above graph.

However, it is not possible to find a 2-colouring of this graph because there
is a triangle of vertcies. The crucial point is this: if you do claim to have
found a k-colouring of a graph I can easily check whether you are right. Thus
the problem of k-colouring a graph is in NP. On the other hand, finding a
k-colouring can involve a lot of work, including much back-tracking. It can
be proved that this problem is NP-complete and so equivalent to SAT.

1The standard reference to all this is [3].
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1.9 Valid arguments

Monty Python, part of the argument sketch

M = Man looking for an argument
A = Arguer

M. An argument isn’t just contradiction.

A. It can be.

M. No it can’t. An argument is a connected series of statements in-
tended to establish a proposition.

A. No it isn’t.

M. Yes it is! It’s not just contradiction.

A. Look, if I argue with you, I must take up a contrary position.

M. Yes, but that’s not just saying ‘No it isn’t.’

A. Yes it is!

M. No it isn’t!

A. Yes it is!

M. Argument is an intellectual process. Contradiction is just the au-
tomatic gainsaying of any statement the other person makes.

(short pause)

A. No it isn’t.

We have so far viewed PL as a low-level description language. This is
its significance in the question as to whether P equals NP or not. We shall
now touch on the other important application of PL which was actually the
reason why PL was introduced in the first place. This is PL as a language
for describing correct reasoning. Here is the idea.
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Let A1, . . . , An andB be wff. We say thatB is a consequence of A1, . . . , An

if whenever all of A1, . . . , An are true then B must be true as well. Equiva-
lently, it is impossible for A1, . . . , An to be true and B to be false. If B is a
consequence of A1, . . . , An we write

A1, . . . , An � B

and we say this is a valid argument. This definition encapsulates many exam-
ples of logical reasoning. It is the foundation of mathematics and the basis
of trying to prove that programs do what we claim they do. We shall see
later that there are examples of logical reasoning that cannot be captured by
PL and this will lead us to the generalization of PL called first-order logic or
FOL.

Examples 1.9.1. Here are some examples of valid arguments.

1. p, p→ q � q. We show that this is a valid argument. Here is the truth
table for p→ q.

p q p→ q
T T T
T F F
F T T
F F T

We are only interested in the cases where both p and p→ q are true.

p q p→ q
T T T

We see that if p and p→ q are true then q must be true.

2. p→ q,¬q � ¬p. We show this is a valid argument.

p q ¬p ¬q p→ q

T T F F T
T F F T F
F T T F T
F F T T T

We are only interested in the cases where both p→ q and ¬q are true.

p q ¬p ¬q p→ q

F F T T T

We see that if p→ q and ¬q are true then ¬p must be true.
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3. p ∨ q,¬p � q. We show this is a valid argument.

p q ¬p p ∨ q
T T F T
T F F T
F T T T
F F T F

We are only interested in the cases where both p ∨ q and ¬p are true.

p q ¬p p ∨ q
F T T T

We see that if p ∨ q and ¬p are true then q must be true.

4. p→ q, q → r � p→ r. We show this is a valid argument.

p q r p→ q q → r p→ r

T T T T T T
T T F T F F
T F T F T T
T F F F T F
F T T T T T
F T F T F T
F F T T T T
F F F T T T

We are only interested in the cases where both p → q and q → r are
true.

p q r p→ q q → r p→ r

T T T T T T
F T T T T T
F F T T T T
F F F T T T

We see that in every case p→ r is true. Thus the argument is valid.

We may always use truth tables in the way above to decide whether
an argument is valid or not but it is quite laborious. The following result,
however, enables us to do this in a very straightforward way.
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Proposition 1.9.2. We have that

A1, . . . , An � B

precisely when
� (A1 ∧ . . . ∧ An)→ B.

Proof. The result is proved in two steps.

1. We prove that A1, . . . , An � B precisely when A1 ∧ . . . ∧ An � B.
This means that have have exactly one wff on the LHS of the semantic
turnstile. Suppose that A1, . . . , An � B is a valid argument and that it
is not the case that A1∧ . . .∧An � B is a valid argument. Then there is
some assignment of truth values to the atoms that makes A1∧ . . .∧An

true and B false. But this means that each of A1, . . . , An is true and
B is false that contradicts that we are given that A1, . . . , An � B is a
valid argument. Suppose that A1∧ . . .∧An � B is a valid argument but
that A1, . . . , An � B is not a valid argument. Then some assignment
of truth values to the atoms makes A1, . . . , An true and B false. This
means that A1 ∧ . . . ∧ An is true and B is false. But this contradicts
that we are given that A1 ∧ . . . ∧ An � B is a valid argument.

2. We prove that A � B precisely when � A → B. Suppose that A � B
is a valid argument and that A→ B is not a tautology. Then there is
some assignment of the truth values to the atoms that makes A true and
B false. But this contradicts that A � B is a valid argument. Suppose
that A → B is a tautology and A � B is not a valid argument. Then
there is some assignment of truth values to the atoms that makes A
true and B false. But then the truth values of A→ B is false from the
way implication is defined and this is a contradiction.

Example 1.9.3. We show that p, p→ q � q is a valid argument by showing
that � (p ∧ (p→ q))→ q is a tautology.

p q p→ q p ∧ (p→ q) (p ∧ (p→ q))→ q

T T T T T
T F F F T
F T T F T
F F T F T



46 CHAPTER 1. PROPOSITIONAL LOGIC

Exercises 4

These cover all sections so far.

1. The binary connective nor is defined by p ↓ q = ¬(p ∨ q). Show that
p→ q is logically equivalent to a wff in which the only binary connective
that appears is nor.

2. Show that → and F together form an adequate set by showing now
both ¬p and p∧ q can be constructed from them. You should interpret
F as being any contradiction.

3. Let A = ((p ∧ q)→ r) ∧ (¬(p ∧ q)→ r).

(a) Draw the truth table for A.

(b) Construct DNF using (a).

(c) Draw the truth table for ¬A.

(d) Construct DNF for ¬A using (c).

(e) Construct CNF for A using (d).

4. Let A = ((p ∧ q)→ r) ∧ (¬(p ∧ q)→ r).

(a) Write A in NNF.

(b) Use known logical equivalences applied to (a) to get DNF.

(c) Use logical equivalences applied to (b) to get CNF.

(d) Simplify A as much as possible using known logical equivalences.

5. Determine which of the following really are valid arguments.

(a) p→ q � ¬q ∨ ¬p.
(b) p→ q,¬q → p � q.

(c) p→ q, r → s, p ∨ r � q ∨ s.
(d) p→ q, r → s,¬q ∨ ¬s � ¬p ∨ ¬r.
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6. Let ∗ be any binary connective that is supposed to be adequate on its
own. [By Question 7 of Exercises 2, there are 16 possible values of ∗.]

(a) Explain why T ∗ T = F .

(b) Explain why F ∗ F = T .

(c) Explain why T ∗ F = F ∗ T .

Deduce that the only possible values for ∗ are ↓ and |.

7. Use [16] to construct a truth table for the following wff.

A(p, q, r, s) = (p ∨ q ∨ r ∨ s) ∧ ¬(p ∧ q) ∧ ¬(p ∧ r) ∧ ¬(p ∧ s)
∧¬(q ∧ r) ∧ ¬(q ∧ s) ∧ ¬(r ∧ s).

Describe in words the meaning of A(p, q, r, s).

8. This question deals with the following 2× 2 array, whose cell numbers

are as indicated (the array is actually empty)
1 2
3 4

For 1 ≤ i ≤ 4 and 1 ≤ j ≤ 2 define the atom

pi,j = ‘The cell i contains the digit j’

Consider the following wff

P = (p1,1 ⊕ p1,2) ∧ (p2,1 ⊕ p2,2) ∧ (p3,1 ⊕ p3,2) ∧ (p4,1 ⊕ p4,2)
∧ (p1,1 ∨ p2,1) ∧ (p3,1 ∨ p4,1) ∧ (p1,2 ∨ p2,2) ∧ (p3,2 ∨ p4,2)
∧ (p1,1 ∨ p3,1) ∧ (p2,1 ∨ p4,1) ∧ (p1,2 ∨ p3,2) ∧ (p2,2 ∨ p4,2).

Determine precisely when P is satisfiable and explain your result in
everyday English. [Hint: Don’t even think about using truth tables].

9. The picture below shows a graph that has vertices marked by the num-
bered circles and edges marked by the lines.

1

2

3
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We say that two vertices are adjacent if they are joined by an edge. The
vertices are to be coloured either blue or red under certain constraints
that will be described by means of a wff in PL denoted by A. The
following is a list of atoms and what they mean.

• p. Vertex 1 is blue.

• q. Vertex 1 is red.

• r. Vertex 2 is blue.

• s. Vertex 2 is red.

• u. Vertex 3 is blue.

• v. Vertex 3 is red.

Here is the wff A constructed from these atoms.

(p⊕ q) ∧ (r ⊕ s) ∧ (u⊕ v) ∧
(q → (r ∧ u)) ∧ (p→ (s ∧ v)) ∧
(s→ (p ∧ u)) ∧ (r → (q ∧ v)) ∧

(v → (p ∧ r)) ∧ (u→ (q ∧ s))

(a) Translate A into English in as pithy and precise a way as possible.

(b) Use [16] to construct a truth table of A.

(c) Interpret this truth table.

1.10 Truth trees

All problems about PL can be answered using truth tables. But there are
two problems.

1. The method of truth tables is hard work.

2. The method of truth tables does not generalize to first-order logic.

In this section, we shall describe an algorithm that is often more efficient
than truth tables and which can also be generalized to first-order logic. This
is the method of truth trees. It will speed up the process of answering the
following questions.
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• Determining whether a wff is satisfiable or not.

• Determining whether a set of wff is satisfiable or not.

• Determining whether a wff is a tautology or not.

• Determining whether an argument is valid or not.

• Converting a wff into DNF.

It is based on the following ideas.

• Given a wff A that we wish to determine is satisfiable or not we start
by assuming A is satisfiable and work backwards.

• We use a data structure, a tree, to keep track efficiently of all possibil-
ities that occur.

• We break A into smaller pieces and so the algorithm is a divide and
conquer algorithm.

• What is not true is false. Thus we need only keep track of what is true
and any other cases will automatically be false.

The starting point is to consider the various possible shapes that a wff A
can have. Observe that since X ⊕ Y ≡ ¬(X ↔ Y ), I shall not mention ⊕
explicitly. There are therefore nine possibilities for A.

1. X ∧ Y .

2. ¬(X ∨ Y ).

3. ¬(X → Y ).

4. ¬¬X.

5. X ∨ Y .

6. ¬(X ∧ Y ).

7. X → Y .

8. X ↔ Y .
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9. ¬(X ↔ Y ).

We now introduce a graphical way of representing the truth values of A in
terms of the truth values for X and Y . We introduce two kinds of graphical
rules.

• The α-rule is non-branching/and-like. If A = X ∗Y then this rule looks
like

X ∗ Y

X
Y

This means that X ∗ Y is true precisely when both X and Y are true.

• The β-rule is branching/or-like. If A = X ∗ Y then this rule looks like

X ∗ Y

X Y

This means that X ∗ Y is true precisely when X or Y is true.

We now list the truth tree rules for the nine forms of the wff given above.

α-rules

X ∧ Y

X
Y

¬(X ∨ Y )

¬X
¬Y

¬(X → Y )

X
¬Y

¬¬X

X

β-rules

X ∨ Y

X Y

¬(X ∧ Y )

¬X ¬Y

X → Y

¬X Y

X ↔ Y

X
Y
¬X
¬Y

¬(X ↔ Y )

X
¬Y

¬X
Y

We shall now combine these small trees to construct a truth tree of a
wff A that will enable us to determine when A is satisfiable and how. The
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following definition dealing with trees is essential. A branch of a tree is a
path that starts at the root and ends at a leaf. For example in the tree below

root

leaf1 vertex

leaf2 leaf3
there are three branches. The key idea in what follows can now be stated:
truth flows down the branches and different branches represent alternative
possibilities and so should be regarded as being combined by means disjunc-
tions. I shall describe the full truth tree algorithm once I have worked my
way through some illustrative examples.

Don’t confuse parse trees which are about syntax with truth trees
which are about semantics.

Example 1.10.1. Find all truth assignments that make the wff A = ¬p→
(q∧ r) true using truth trees. The first step is to place A at the root of what
will be the truth tree

¬p→ (q ∧ r)
We now use the branching rule for → to get

¬p→ (q ∧ r)X

¬(¬p) q ∧ r
I have used the symbol Xto indicate that I have used the occurrence of the
wff ¬p → (q ∧ r). It is best to be systematic and so I shall work from left-
to-right. We now apply the truth tree rule for double negation to get

¬p→ (q ∧ r)X

X¬(¬p)

p

q ∧ r

where once again I have used the check symbol Xto indicate that that oc-
currence of a wff has been used. Finally, I apply the truth tree rule for
conjunction to get
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¬p→ (q ∧ r)X

X¬(¬p)

p

q ∧ rX

q
r

There are now no further truth tree rules I can apply and so we say that
the truth tree is finished. We deduce that the root A is true precisely when
either p is true or (q and r are both true). In other words, A ≡ p ∨ (q ∧ r),
which is in DNF. You can easily check that this contains exactly the same
information as the rows of the truth table of A that output T . By our idea
above we know that all other truth values must be F .

Before giving some more complex examples, let me highlight some im-
portant points (all of which can be proved).

• It is the branches of the truth tree that contain information about the
truth table. Each branch contains information about one or more rows
of the truth table.

• It follows that all the literals on a branch must be true.

• Thus if an atom and its negation occur on the same branch then there
is a contradiction. That branch is then closed by placing a 7 at its leaf.
No further growth takes place at a closed leaf.

The next example illustrates an important point about applying β-rules.

Example 1.10.2. Find all the truth assignments that satisfy

¬((p ∨ q)→ (p ∧ q)).

Here is the truth tree for this wff.
X¬((p ∨ q)→ (p ∧ q))

Xp ∨ q
X¬(p ∧ q)

p

7¬p ¬q

q

¬p ¬q 7
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The truth tree is finished and there are two open branches (those branches
not marked with a 7.) The first branch tells us that p and ¬q are both true
and the second tells is that ¬p and q are both true. It follows that the wff
has the DNF

(p ∧ ¬q) ∨ (¬p ∧ q).

The key point to observe in this example is that when I applied the β-rule
to the wff ¬(p ∧ q) I applied it to all branches that contained that wff. This
is crucially important since possibilities multiply.

The above example leads to the following strategy.

Apply α-rules before β-rules since the application of β-rules leads
to the tree gaining more branches and subsequent applications of
any rule must be appended to every branch.

The following examples are for illustrative purposes.

Example 1.10.3. Find all satisfying truth assignments to

(p ∧ (q → r)) ∨ (¬p ∧ (r → q)).

Here is the truth tree of this wff.
(p ∧ (q → r)) ∨ (¬p ∧ (r → q)) X

Xp ∧ (q → r)

p
Xq → r

¬q r

¬p ∧ (r → q)X

¬p
r → q X

¬r q
There are four branches and all branches are open. These lead to the DNF

(p ∧ ¬q) ∨ (p ∧ r) ∨ (¬r ∧ ¬p) ∨ (q ∧ ¬p).

Example 1.10.4. Write

(p→ (q → r))→ ((p→ q)→ r)

in DNF. Here is the truth tree of this wff.
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(p→ (q → r))→ ((p→ q)→ r)X

X¬(p→ (q → r))

p
X¬(q → r)

q
¬r

(p→ q)→ r X

¬(p→ q)X

p
¬q

r

There are three branches all open. These lead to the DNF

(p ∧ q ∧ ¬r) ∨ (p ∧ ¬q) ∨ r.

Example 1.10.5. Write

[(p ∧ ¬q)→ (q ∧ r)]→ (s ∨ ¬q),

which contains four atoms, in DNF. Here is the truth tree of this wff.
((p ∧ ¬q)→ (q ∧ r))→ (s ∨ ¬q)X

X¬((p ∧ ¬q)→ (q ∧ r))

Xp ∧ ¬q
X¬(q ∧ r)

p
¬q

¬q ¬r

s ∨ ¬q X

s ¬q

There are four branches all open. These lead to the DNF

(p ∧ ¬q) ∨ (¬r ∧ ¬q ∧ p) ∨ s ∨ ¬q.

We say that a set of wff A1, . . . , An is satisfiable if there is at least one
single truth assigment that makes them all true. This is equivalent to saying
that A1 ∧ . . . ∧ An is satisfiable. Thus to show that A1, . . . , An is satisfiable
simply list these wff as the root of a truth tree.

It’s important to remember that truth trees are an algorithm for finding
those truth assignments that make a wff true. This leads to the following
important result.
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Proposition 1.10.6. To show that X is a tautology show that the truth tree
for ¬X has the property that every branch closes.

Proof. If the truth tree for ¬X has the property that every branch closes
then ¬X is not satisfiable. This means that ¬X is a contradiction. Thus X
is a tautology.

Here are some examples of showing that a wff is a tautology.

Example 1.10.7. Determine whether

X = ((p→ q) ∧ (p→ r))→ (p→ (q ∧ r))

is a tautology or not. We begin the truth tree with ¬X.

¬X X

(p→ q) ∧ (p→ r) X
¬(p→ (q ∧ r)) X

p→ q X
p→ r X

p
¬(q ∧ r)X

¬p 7 q

¬q 7 ¬r

¬p 7 r 7

The tree for ¬X closes and so ¬X is a contradiction. Thus X is a tautology.

Example 1.10.8. Determine whether

X = (p→ (q → r))→ ((p→ q)→ (p→ r))

is a tautology or not.
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¬X X

p→ (q → r) X
¬((p→ q)→ (p→ r))X

p→ q X
¬(p→ r) X

p
¬r

¬p 7 q → r X

¬p 7 q

¬q 7 r 7
The tree for ¬X closes and so ¬X is a contradiction. Thus X is a tautology.

We can also use truth trees to determine whether an argument is valid
or not. To see how, we use the result proved earlier that A1, . . . , An � B
precisely when � (A1 ∧ . . . ∧ An) → B. Thus to show that an argument is
valid using a truth tree, we could place ¬[(A1 ∧ . . . ∧ An) → B] at its root.
But this is logically equivalent to A1 ∧ . . . ∧ An ∧ ¬B. Thus we need only
list A1, . . . , An,¬B at the root of our truth tree. If every branch closes the
corresponding argument is valid, and if there are open branches then the
argument is not logically valid.

Examples 1.10.9. We use truth trees to show that our simple examples of
arguments really are valid.

1. p, p→ q � q is a valid argument2.

p
p→ q X
¬q

¬p 7 q 7

The tree closes and so the argument is valid.

2. p→ q,¬q � ¬p is a valid argument3.

2Known as modus ponens.
3Known as modus tollens.
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p→ q X
¬q
¬¬p X

p

¬p 7 q 7

The tree closes and so the argument is valid.

3. p ∨ q,¬p � q is a valid argument4.

p ∨ q X
¬p
¬q

p 7 q 7

The tree closes and so the argument is valid.

4. p→ q, q → r � p→ r is a valid argument5.

p→ q X
q → r X
¬(p→ r) X

p
¬r

¬p 7 q

¬q 7 r 7

The tree closes and so the argument is valid.

Example 1.10.10. Show that the following

(¬q → ¬p) ∧ (¬r → ¬q), s ∧ (s→ ¬r), t→ p � ¬t

is a valid argument.

4Known as disjunctive syllogism.
5Known as hypothetical syllogism.
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(¬q → ¬p) ∧ (¬r → ¬q) X
s ∧ (s→ ¬r) X

t→ p X
¬¬t X

t

¬q → ¬p X
¬r → ¬q X

s
s→ ¬r X

¬t 7 p

¬¬q

q 7

¬¬r

r

¬s 7 ¬r 7

¬q 7

¬p 7

The tree closes and so the argument is valid.
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Truth tree algorithm

Input: wff X.

Procedure: Place X at what will be the root of the truth tree.
Depending on its shape, apply either an α-rule or a β-rule. Place a
Xagainst X to indicate that it has been used.

Now repeat the following:

• Close any branch that contains an atom and its negation by plac-
ing a cross 7 beneath the leaf defining that branch.

• If all branches are closed then stop since the tree is now finished
and closed.

• It not all branches are closed but the tree contains only literals
or used wff then stop since the tree is now finished and open.

• If the tree is not finished then choose an unused wff Y which is
not a literal. Now do the following: for each open branch that
contains Y append the effect of applying either the α-rule
or β-rule to Y , depending on which is appropriate, to the
leaf of that branch.

Output:

• If the tree is finished and closed then X is a contradiction.

• If the tree is finished and open then X is satisfiable. We may find
all the truth assignments that make X true as follows: for each
open branch in the finished tree for X assign the value T to all
the literals in that branch. If any atoms are missing from this
branch then they may be assigned truth values arbitrarily.
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Applications of truth trees

1. To prove that X is a tautology, show that the finished truth tree for
¬X is closed.

2. To prove that X is a satisfiable, show that the finished truth tree for
X is open.

3. To prove that A1, . . . , An |= B is a valid argument, place

A1, . . . , An,¬B

at the root of the tree and show that the finished truth tree is closed.

4. To put X into DNF, construct the truth-tree for X. Assume that when
finished it is open. For each open branch i, construct the conjunction of
the literals that appear on that branch Ci. Then form the disjunction
of the Ci.

Notation. Suppose that the finished truth tree with root A1, . . . , An,¬B
closes. Then we write

A1, . . . , An ` B.

The following theorem says that the truth tree algorithm does exactly what
it is supposed to do.

Theorem 1.10.11 (Soundness and completeness).

A1, . . . , An ` B if and only if A1, . . . , An |= B.

The symbol |= is about truth and the symbol ` is about proof. The above
theorem says that truth can be discovered via proof.

Exercises 5

Section 1.10.

1. Determine whether the following arguments are valid or not using truth
trees.
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(a) p→ q, r → s, p ∨ r |= q ∨ s.
(b) p→ q, r → s,¬q ∨ ¬s |= ¬p ∨ ¬r.
(c) p→ q, r → s, p ∨ ¬s |= q ∨ ¬r.

2. Show that the following are tautologies using truth trees.

(a) q → (p→ q).

(b) [(p→ q) ∧ (q → r)]→ (p→ r).

(c) [(p→ q) ∧ (p→ r)]→ (p→ (q ∧ r)).
(d) [((p→ r) ∧ (q → r)) ∧ (p ∨ q)]→ r.

3. Determine whether the following sets of wff are satisfiable and where
they are find all truth assignments making them true using truth trees.

(a) A→ ¬(B ∧ C), (D ∨ E)→ G, G→ ¬(H ∨ I), ¬C ∧ E ∧H.

(b) (A ∨B)→ (C ∧D), (D ∨ E)→ G, A ∨ ¬G.

(c) (A → B) ∧ (C → D), (B → D) ∧ (¬C → A), (E → G) ∧ (G →
¬D), ¬E → E.

4. In Chapter 1 of Winnie-the-Pooh by A. A. Milne, 1926, Pooh makes
the following argument.

(a) There is a buzzing.

(b) If there is a buzzing then somebody is making the buzzing.

(c) If somebody is making the buzzing then somebody is bees.

(d) If somebody is bees then there is honey.

(e) If there is honey then there is honey for Pooh to eat.

(f) Therefore there is honey for Pooh to eat.

Using the letters p, q, r . . . express this argument in symbolic form and
use truth trees to determine whether Pooh’s argument is valid.

5. A student of logic reasons as follows
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“If I go to the lecture tomorrow then I (must) get up early
and if I go to the pub tonight then I (will) stay up late. If
I stay up late and I get up early then I (will only) have five
hours sleep. It is inconceivable that (treat as negation) I have
(only) five hours of sleep. Therefore either I (will) not go to
the lecture tomorrow (inclusive) or I (will) not go to the pub
tonight.”

Assign atoms as follows:

p I go to the lecture tomorrow.

q I get up early.

r I go to the pub tonight.

s I stay up late.

t I have five hours sleep.

[Words in brackets are included for grammatical rather than logical rea-
sons]. Express the student’s argument in symbolic form and determine
whether the argument is valid or not using truth trees.

6. The following is due to Charles Lutwidge Dodgson (1832–1898), an
Oxford mathematician.

(a) All the dated letters in this room are written on blue paper.

(b) None of them is in black ink, except those that are written in the
third person.

(c) I have not filed any of those that I can read.

(d) None of those that are written on one sheet are undated.

(e) All of those that are not crossed out are in black ink.

(f) All of those written by Brown begin with ‘Dear Sir’.

(g) All of those that are written on blue paper are filed.

(h) None of those that are written on more than one sheet are crossed
out.

(i) None of those that begin with ‘Dear Sir’ are written in the third
person.
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(j) Therefore: I cannot read any of Brown’s letters.

Assign atoms as follows:

p The letter is dated.

q The letter is written on blue paper.

r The letter is written in black ink.

s The letter is written in the third person.

t The letter is filed.

u I can read the letter.

v The letter is written on one sheet.

w The letter is crossed out.

x The letter is written by Brown.

y The letter begins with ‘Dear Sir’.

You will will need to do a certain amount of interpretation to convert
(a)–(j) into symbolic PL form using these atoms. Hence formalize the
above argument and use truth trees to determine its validity.

Exercises 6

Revision of Chapter 1

1.

(a) Construct a parse tree for the following wff

A = (p↔ q)→ ((p ∧ r)↔ (q ∧ r)).

Construct a truth-table for A.

(b) Write (p→ q)→ p in conjunctive normal form.

(c) Write p↔ q in disjunctive normal form.
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(d) Prove that
p→ (q → r) ≡ q → (p→ r).

2. You must use truth trees to answer this question.

(a) Prove that
(p→ (q → r))→ ((p ∧ q)→ r)

is a tautology.

(b) Prove that the argument

(p→ q) ∧ (r → s) ∧ (¬q ∨ ¬s) |= ¬p ∨ ¬r

is valid.

(c) Write the wff below in disjunctive normal form

(q ∧ r)→ (p↔ (¬q ∨ r)).

3.

(a) Construct a parse tree for the following wff

A = (p ∧ (q → r)) ∨ (¬p ∧ (r → q)).

(b) Construct a truth table for A.

(c) Write A in disjunctive normal form.

(d) Write A in conjunctive normal form.

4. You must use truth trees to answer this question.

(a) Prove that
((p→ q) ∧ (q → r))→ (p→ r)

is a tautology.

(b) Prove that the argument

(p→ q) ∧ (r → s) ∧ (p ∨ ¬s) |= q ∨ ¬r.

is valid.

(c) Write the wff below in disjunctive normal form

(p→ (q → r))→ ((p→ q)→ r).



Chapter 2

Boolean algebras

6.5. When the answer cannot be put into words, neither can the
question be put into words. The riddle does not exist. If a question
can be framed at all, it is also possible to answer it. — Tractatus
Logico-Philosophicus, Ludwig Wittgenstein.

This chapter can be read after Chapter 1 or after Chapters 1 and 3.
Unlike the other two chapters, this one is not about logic per se but about the
algebra that arises from PL. I have included it because the main application
is to circuit design: specfically, the kinds of circuits that are needed to build
computers. It therefore provides a bridge between logic and the real world.

2.1 Definition of Boolean algebras

I shall begin by listing some logical equivalences in propositional logic which
were proved in the exercises. I shall use T to mean any tautology and F to
mean any contradiction.

1. (p ∨ q) ∨ r ≡ p ∨ (q ∨ r).

2. p ∨ q ≡ q ∨ p.

3. p ∨ F ≡ p.

4. (p ∧ q) ∧ r ≡ p ∧ (q ∧ r).

5. p ∧ q ≡ q ∧ p.

65
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6. p ∧ T ≡ p.

7. p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r).

8. p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r).

9. p ∨ ¬p ≡ T .

10. p ∧ ¬p ≡ F .

We now make the following replacements in the above list.

PL BA

≡ =
∨ +
∧ ·
¬ ¯
T 1
F 0

to get exactly the definition of a Boolean algebra. This is now an algebraic
system rather than a logical system. It is adapted to dealing with truth tables
and so with circuits, as we shall see.

Formally, a Boolean algebra is defined by the following data (B,+, ·, ¯, 0, 1)
where B is a set, we shall say more about sets later, that carries the struc-
ture, + and · are binary operations, meaning that they have two, ordered
inputs and one output, a 7→ ā is a unary operation, meaning that it has one
input and one output, and two special elements of B: namely, 0 and 1. In
addition, the following ten axioms are required to hold.

(B1) (x+ y) + z = x+ (y + z).

(B2) x+ y = y + x.

(B3) x+ 0 = x.

(B4) (x · y) · z = x · (y · z).

(B5) x · y = y · x.

(B6) x · 1 = x.
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(B7) x · (y + z) = x · y + x · z.

(B8) x+ (y · z) = (x+ y) · (x+ z).

(B9) x+ x̄ = 1.

(B10) x · x̄ = 0.

These axioms are organized as follows. The first group of three (B1),
(B2), (B3) deals with the properties of + on its own: brackets, order, special
element. The second group of three (B4), (B5), (B6) deals with the properties
of · on its own: brackets, order, special element. The third group (B7), (B8)
deals with how + and · interact, with axiom (B8) being odd looking. The
final group (B9), (B10) deals with the properties of a 7→ ā, called comple-
mentation. On a point of notation, we shall usually write xy rather than x ·y.

Remark 2.1.1. Do I have to remember these axioms? No. In the exam
paper I will list these axioms if they are needed. You do, however, have to
familiarize yourself with them and learn how to use them.

Remark 2.1.2. The Boolean algebra associated with PL is called the Lin-
denbaum algebra. The only issue is how to convert ≡ into =. Denote by
Prop the set of all wff in propositional logic. There are two answers.

Answer 1. Not correct but not far off. The set Prop is es-
sentially a Boolean algebra. You need to insert the word ‘essen-
tially’ in order to cover yourself to avoid legal action by outraged
Boolean algebraists.

Answer 2. The correct one. Logical equivalence is an equiva-
lence relation on the set Prop and is a congruence with respect
to the operations ∨, ∧ and ¬. The quotient of Prop by ≡ is then
the Boolean algebra. This is the correct answer but needs a lot
of unpacking before it can be understood which will not be given
here.

The Boolean algebra we shall use in circuit design is the 2-element Boolean
algebra B. It is defined as follows. Put B = {0, 1}. We define operations ¯,
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·, and + by means of the following tables. They are the same as the truth
table for ¬, ∧ and ∨ except that we replace T by 1 and F by 0.

x x̄
1 0
0 1

x y x · y
1 1 1
1 0 0
0 1 0
0 0 0

x y x+ y
1 1 1
1 0 1
0 1 1
0 0 0

Proposition 2.1.3. With the definitions above (B,+, ·,¯ , 0, 1) really is a
Boolean algebra.

We shall mainly be working with expressions in x, y, z where the variables
are Boolean variables meaning that x, y, z ∈ B.

Boolean algebras form an algebra that is similar to but also different from
the kind of algebra you learnt at school. Just how different is illustrated by
the following results.

Proposition 2.1.4. Let B be a Boolean algebra and let a, b ∈ B.

1. a2 = a · a = a. Idempotence.

2. a+ a = a.

3. a · 0 = 0.

4. 1 + a = 1.

5. a = a+ a · b. Absorption law.

6. a+ b = a+ ā · b. Absorption law.

Proof. (1)

a = a · 1 by (B6)

= a · (a+ ā) by (B9)

= a · a+ a · ā by (B7)

= a2 + 0 by (B10)

= a2 by (B3).
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(2) is proved in a very similar way to (1). Use the fact that the Boolean
algebra axioms come in pairs where · and + are interchanged and 0 and 1
are interchanged. This is an aspect of what is called duality.

(3)

a · 0 = a · (a · ā) by (B10)

= (a · a) · ā by (B4)

= a · ā by (1) above

= 0 by (B10).

(4) The dual proof to (3).

(5)

a+ a · b = a · 1 + a · b by (B6)

= a · (1 + b) by (B7)

= a · 1 by (4) above

= a by (B6).

(6)

a+ b = a+ 1b by (B6)

= a+ (a+ ā)b by (B9)

= a+ ab+ āb by (B7) and (B5)

= a+ āb by (5) above

These properties can be used to simplify Boolean expressions.

Example 2.1.5. Simplify

x+ yz + x̄y + xȳz.

At each stage in our argument we are explicit about what properties we are
using. I shall use associativity of addition throughout to avoid too many
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brackets.

x+ yz + x̄y + xȳz = (x+ x̄y) + yz + xȳz by commutativity

= (x+ y) + yz + xȳz by absorption

= x+ (y + yz) + xȳz by associativity

= x+ y + xȳz by absorption

= x+ (y + ȳ(xz)) by commutativity and associativity

= x+ (y + xz) by absorption

= (x+ xz) + y by commutativity and associativity

= x+ y by absorption.

The obvious question about calculations such as these is how do you know
what to aim for? There is a diagrammatic way of thinking about Boolean
algebras that uses sets which will help us answer this question.

2.2 Set theory

A set is a new data type that will also be important when we come to study
first-order logic. Set theory was invented by Georg Cantor (1845–1918) in
the last quarter of the nineteenth century.

Basic definitions

Set theory begins with two deceptively simple definitions on which every-
thing is based.

1. A set is a collection of objects, called elements, which we wish to regard
as a whole.

2. Two sets are equal precisely when they contain the same elements.

It is customary to use capital letters to name sets such as A,B,C . . . or
fancy capital letters such as N,Z . . . with the elements of a set usually being
denoted by lower case letters. If x is an element of the set A then we write
x ∈ A and if x is not an element of the set A then we write x /∈ A. To
indicate that some things are to be regarded as a set rather than just as
isolated individuals, we enclose them in ‘curly brackets’ { and } formally
called braces. Thus the set of suits in a pack of cards is {♣,♦,♥,♠}.
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A set should be regarded as a bag of elements, and so the order of the
elements within the set is not important. Thus {a, b} = {b, a}. Perhaps more
surprisingly, repetition of elements is ignored. Thus {a, b} = {a, a, a, b, b, a}.
Sets can be generalized to what are called multisets where repetition is
recorded.

The set {} is empty and is called the empty set. It is given a special
symbol ∅, which is not the Greek letter φ or Φ, but is allegedly the first
letter of a Danish word meaning ‘desolate’. The symbol ∅ means exactly the
same thing as {}. Observe that ∅ 6= {∅} since the empty set contains no
elements whereas the set {∅} contains one element.

The number of elements a set contains is called its cardinality denoted by
|X|. A set is finite if it only has a finite number of elements, otherwise it is
infinite. A set with exactly one element is called a singleton set.

We can sometimes define infinite sets by using curly brackets but then,
because we cannot list all elements in an infinite set, we use ‘. . .’ to mean ‘and
so on in the obvious way’. This can also be used to define big finite sets where
there is an obvious pattern. However, the most common way of describing
a set is to say what properties an element must have to belong to it. By
a property we mean a sentence containing a variable such as x so that the
sentence becomes true or false depending on what we substitute for x. For
example, the sentence ‘x is an even natural number’ is true when x is replaced
by 2 and false when x is replaced by 3. If we abbreviate ‘x is an even natural
number’ by E(x) then the set of even natural numbers is the set of all natural
numbers n such that E(n) is true. This set is written {x : E(x)} or {x |
E(x)}. More generally, if P (x) is any property then {x : P (x)} means ‘the
set of all things x that satisfy the condition P ’. Properties are important in
first-order logic. Here are some examples of sets defined in various ways.

Examples 2.2.1.

1. D = {Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sun-
day }, the set of the days of the week. This is a small finite set and so
we can conveniently list all its elements.

2. M = { January, February, March, . . . , November, December }, the set
of the months of the year. This is a finite set but we did not want to
write down all the elements explicitly so we wrote ‘. . . ’ instead.

3. A = {x : x is a prime natural number}. We here define a set by de-
scribing the properties that the elements of the set must have. In this



72 CHAPTER 2. BOOLEAN ALGEBRAS

case P (x) is the statement ‘x is a prime natural number’ and those
natural numbers x are admitted membership to the set when they are
indeed prime.

The following notation will be useful when we come to study first-order
logic.

Examples 2.2.2.

1. The set N = {0, 1, 2, 3, . . .} of all natural numbers. Caution is required
here since some books eccentrically do not regard 0 as a natural number.

2. The set Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .} of all integers. The reason
Z is used to designate this set is because ‘Z’ is the first letter of the
word ‘Zahl’, the German for number.

3. The set Q of all rational numbers. That is those numbers that can be
written as quotients of integers with non-zero denominators.

4. The set R of all real numbers. That is all numbers which can be rep-
resented by decimals with potentially infinitely many digits after the
decimal point.

Given a set A, a new set B can be formed by choosing elements from
A to put into B. We say that B is a subset of A, denoted by B ⊆ A. In
mathematics, the word ‘choose’, unlike in polite society, also includes the
possibility of choosing nothing and the possibility of choosing everything. In
addition, there does not need to be any rhyme or reason to your choices: you
can pick elements ‘at random’ if you want. If A ⊆ B and A 6= B then we say
that A is a proper subset of B.

Examples 2.2.3.

1. ∅ ⊆ A for every set A, where we choose no elements from A.

2. A ⊆ A for every set A, where we choose all the elements from A.

3. N ⊆ Z ⊆ Q ⊆ R. Observe that Z ⊆ Q because an integer n is equal to
the rational number n

1
.

4. E, the set of even natural numbers, is a subset of N.
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5. O, the set of odd natural numbers, is a subset of N.

6. A = {x : x ∈ R and x2 = 4} which is equal to the set {−2, 2}. This
example demonstrates that you may have to do some work to actually
produce specific elements of a set defined by a property.

Remark 2.2.4. Russell’s paradox. The idea that sets are defined by prop-
erties is a natural one, but there are murky logical depths. It seems obvious
that given a property P (x), there is a corresponding set {x : P (x)} of all those
things that have that property. We shall now describe a famous result in the
history of mathematics called Russell’s Paradox, named after Bertrand Rus-
sell (1872–1970), which shows that just because something is obvious does
not make it true. Define R = {x : x /∈ x}. In other words: the set of all sets
that do not contain themselves as an element. For example, ∅ ∈ R. We now
ask the question: is R ∈ R? There are only two possible answers and we
investigate them both.

1. Suppose that R ∈ R. This means that R must satisfy the entry
requirements to belong to R which it can only do if R /∈ R.

2. Suppose that R /∈ R. Then it satisfies the entry requirement to belong
to R and so R ∈ R.

Thus exactly one of R ∈ R and R /∈ R must be true but assuming one
implies the other. We therefore have an honest-to-goodness contradiction.
Our only way out is to conclude that, whatever R might be, it is not a
set. This contradicts the obvious statement we began with. If you want
to understand how to escape this predicament, you will have to study set
theory. Disconcerting as this might be, imagine how much more so it was to
the mathematician Gottlob Frege (1848–1925). He was working on a book
which based the development of mathematics on sets when he received a
letter from Russell describing this paradox thereby undermining what Frege
was attempting to achieve.

Boolean operations

We now define three operations on sets that are based on the PL logical
connectives ∧, ∨ and ¬. They are called Boolean operations, named after
George Boole (1815–1864). Let A and B be sets. Define a set, called the
intersection of A and B, denoted by A ∩ B, whose elements consist of all
those elements that belong to A and B.
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A B

Define a set, called the union of A and B, denoted by A∪B, whose elements
consist of all those elements that belong to A or B.

A B

Define a set, called the difference or relative complement of A and B, denoted
by A\B,1 whose elements consist of all those elements that belong to A and
not to B.

A B

The diagrams used to illustrate the above definitions are called Venn dia-
grams where a set is represented by a region in the plane.

Example 2.2.5. Let A = {1, 2, 3, 4} and B = {3, 4, 5, 6}. Determine A∩B,
A ∪B, A \B and B \ A.

• A ∩ B. We have to find the elements that belong to both A and B.
We start with the elements in A and work left-to-right: 1 is not an
element of B; 2 is not an element of B; 3 and 4 are elements of B.
Thus A ∩B = {3, 4}.

1Sometimes denoted by A−B.
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• A∪B. We join the two sets together {1, 2, 3, 4, 3, 4, 5, 6} and then read
from left-to-right weeding out repetitions to get A∪B = {1, 2, 3, 4, 5, 6}.

• A\B. We have to find the elements of A that do not belong to B. Read
the elements of A from left-to-right comparing them with the elements
of B: 1 does not belong to B; 2 does not belong to B: but 3 and 4 do
belong to B. It follows that A \B = {1, 2}.

• To calculate B \A we have to find the set of elements of B that do not
belong to A. This set is equal to {5, 6}.

Sets A and B are said to be disjoint if A ∩B = ∅.

Properties of Boolean operations

In the theorem below, we list the properties the Boolean operations have.

Theorem 2.2.6 (Properties of Boolean operations). Let A, B and C be any
sets.

1. A ∩ (B ∩ C) = (A ∩B) ∩ C. Intersection is associative.

2. A ∩B = B ∩ A. Intersection is commutative.

3. A ∩ ∅ = ∅ = ∅ ∩ A. The empty set is the zero for intersection.

4. A ∪ (B ∪ C) = (A ∪B) ∪ C. Union is associative.

5. A ∪B = B ∪ A. Union is commutative.

6. A ∪ ∅ = A = ∅ ∪ A. The empty set is the identity for union.

7. A ∩ (B ∪C) = (A ∩B) ∪ (A ∩C). Intersection distributes over union.

8. A∪ (B ∩C) = (A∪B)∩ (A∪C). Union distributes over intersection.

9. A \ (B ∪ C) = (A \B) ∩ (A \ C). De Morgan’s law part one.

10. A \ (B ∩ C) = (A \B) ∪ (A \ C). De Morgan’s law part two.

11. A ∩ A = A. Intersection is idempotent.

12. A ∪ A = A. Union is idempotent.
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To illustrate these properties, we can use Venn diagrams.

Example 2.2.7. We illustrate property (7). The Venn diagram for

(A ∩B) ∪ (A ∩ C)

is given below.

A

B

C

This is exactly the same as the Venn diagram for

A ∩ (B ∪ C).

It follows that
A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)

at least as far as Venn diagrams are concerned.

To prove these properties hold, we have to proceed more formally and use
PL.

Example 2.2.8. We prove part (7) of Theorem 2.2.6 to illustrate the method.
We use the fact that

p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r).

Our goal is to prove that

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C).

To do this, we have to prove that the set of elements belonging to the lefthand
side is the same as the set of elements belonging to the righthand side. An
element x either belongs to A or it does not. Similarly, it either belongs to
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B or it does not, and it either belongs to C or it does not. Define p to be
the statement ‘x ∈ A’. Define q to be the statement ‘x ∈ B’. Define r to
be the statement ‘x ∈ C’. If p is true then x is an element of A, and if p is
false then x is not an element of A. Using now the definitions of the Boolean
operations, it follows that x ∈ A ∩ (B ∪ C) precisely when the statement
p ∧ (q ∨ r) is true. Similarly, x ∈ (A ∩ B) ∪ (A ∩ C) precisely when the
statement (p ∧ q) ∨ (p ∧ r) is true. But these two statements have the same
truth tables. It follows that an element belongs to the lefthand side precisely
when it belongs to the righthand side. Consequently, the two sets are equal.

The fact that A ∩ (B ∩ C) = (A ∩ B) ∩ C means that we can just write
A∩B∩C unambiguously without brackets. Similarly, we can write A∪B∪C
unambiguously. This can be extended to any number of unions and any
number of intersections.
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The Boolean algebra of subsets of a set

The set whose elements are all the subsets of X is called the power set of
X and is denoted by P(X). It is important to remember that the power set
of a set X contains both ∅ and X as elements.

Example 2.2.9. We find all the subsets of the set X = {a, b, c} and so the
power set of X. First there is the subset with no elements, the empty set.
Then there are the subsets that contain exactly one element: {a}, {b}, {c}.
Then the subsets containing exactly two elements: {a, b}, {a, c}, {b, c}. Fi-
nally, there is the whole set X. It follows that X has 8 subsets and so

P(X) = {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, X}.

Proposition 2.2.10. Let X be a finite set with n elements. Then |P(X)| =
2n.

Let A ⊆ X. Define A = X \ A.

BA Power sets

+ ∪
· ∩
¯ ¯
1 X
0 ∅

The proof of the following is immediate by Theorem 2.2.6.

Proposition 2.2.11. Let X be any set. Then (P(X),∪,∩,¯ , ∅, X) is a
Boolean algebra.

Example 2.2.12. We draw a graph of selected inclusions between the ele-
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ments of the Boolean algebra P(X) where X = {a, b, c}.

∅

{a} {b} {c}

{a, b} {a, c} {b, c}

X

The following is simply included for context.

Theorem 2.2.13.

1. Any finite Boolean algebra has 2n elements for some natural number n.

2. Any two finite Boolean algebras with the same number of elements are
‘essentially the same’ or isomorphic.

We may now use Venn diagrams to illustrate certain Boolean expressions
and so help us in simplify them.

Example 2.2.14. We return to the Boolean expression

x+ yz + x̄y + xȳz

that we simplified earlier. We interpret this in set theory where the Boolean
variables x, y, z are replaced by sets X, Y, Z. Observe that x̄y translates into
Y \X. Thus the above Boolean expression is the set

X ∪ (Y ∩ Z) ∪ (Y \X) ∪ ((X ∩ Z) \ Y ).

If you draw the Venn diagram of this set you get exactly X ∪ Y . This
translates into the Boolean expression x+y which is what we obtained when
we simplified the Boolean expression.
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2.3 Binary arithmetic

In everyday life, we write numbers down using base 10. For computers, it is
more natural to treat numbers as being in base 2 or binary. In this section,
we briefly explain what this means.

A string is simply an ordered sequence of symbols. Strings are another
important class of data structures. If the symbols used in the string are taken
only from {0, 1}, the set of binary digits, then we have a binary string. All
kinds of data can be represented by binary strings.

The key idea is that every natural number can be represented as a sum of
powers of two. How to do this is illustrated by the following example. Recall
that 20 = 1, 21 = 2, 22 = 4, 23 = 8, . . .

Example 2.3.1. Write 316 as a sum of powers of 2.

• We first find the highest power of 2 that is less than or equal to our
number. We see that 28 < 316 but 29 > 316. We can therefore write
316 = 28 + 60.

• We now repeat this procedure with 60. We find that 25 < 60 but
26 > 60. We can therefore write 60 = 25 + 28.

• We now repeat this procedure with 28. We find that 24 < 28 but
25 > 28. We can therefore write 28 = 24 + 12.

• We now repeat this procedure with 12. We find that 23 < 12 but
24 > 12. We can therefore write 12 = 28 + 4. Of course 4 = 22.

It follows that
316 = 28 + 25 + 24 + 23 + 22,

a sum of powers of two.

Once we have written a number as a sum of powers of two we can encode
that information as a binary string. How to do so is illustrated by the
following example that continues the one above.

Example 2.3.2. We have that

316 = 28 + 25 + 24 + 23 + 22.

We now set up the following table



2.3. BINARY ARITHMETIC 81

28 27 26 25 24 23 22 21 20

1 0 0 1 1 1 1 0 0

which includes all powers of two up to and including the largest one used.
We say that the binary string

100111100

is the binary representation of the number 316.

Given a number written in binary it is a simple matter to convert it back
into standard base ten. Essentially the table above should be constructed
and the sums of powers of two that occur should be added up.

All of arithmetic can be carried out working solely in base 2. However,
we shall only need to describe how to do addition. The starting point is to
consider how to add two one-bit binary numbers together.

carry sum

0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

However, this is not quite enough to enable us to add two arbitrary binary
numbers together. The basic algorithm is the same as in base 10 except that
you carry 2 rather than carry 10. Because of the carries you actually need to
know how to add three binary digits rather than just two. The table below
shows how.

carry sum

1 1 1 1 1
1 1 0 1 0
1 0 1 1 0
1 0 0 0 1
0 1 1 1 0
0 1 0 0 1
0 0 1 0 1
0 0 0 0 0

Example 2.3.3. We calculate 11 + 1101 in binary using the second of the
two tables above. We first pad out the first string with 0s to get 0011. We
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now write the two binary numbers one above the other.

0 0 1 1
1 1 0 1

0

Now work from right-to-left a column at a time adding up the digits you see
and making any necessary carries. Observe that in the first column on the
right there is no carry but it is more helpful, as we shall see, to think of this
as a 0 carry. Here is the sequence of calculations.

0 0 1 1
1 1 0 1

0

1 0

0 0 1 1
1 1 0 1

0 0

1 1 0

0 0 1 1
1 1 0 1

0 0 0

1 1 1 0

0 0 1 1
1 1 0 1

1 0 0 0 0

1 1 1 1 0

We find that the sum of these two numbers is 10000.

2.4 Circuit design

We now have enough theory to explain how Boolean algebras can be used in
designing circuits. We shall reuse some results and ideas from PL interpreted
in terms of Boolean algebras.

A computer circuit is a physical, not a mathematical, object but can be
modelled by mathematics. Currently, all computers are constructed using
binary logic, meaning that their circuits operate using two values of some
physical property, such as voltage. Circuits come in two types: sequential
circuits which have an internal memory and combinatorial circuits which do
not. We shall only describe combinatorial circuits. Let C be a combinato-
rial circuit with m input wires and n output wires. We can think of C as
consisting of n combinatorial circuits C1, . . . , Cn each having m input wires
but only one output wire each. The combinatorial circuit Ci tells us about
how the ith output of the circuit C behaves with respect to inputs. Thus
it is enough to describe combinatorial circuits with m inputs and 1 output.
Such a circuit is said to describe a Boolean function f : Bm → B where Bm

represents all the possible 2m inputs. Such a function is described by means
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of an input/output table. Here is an example of such a table.

x y z f(x, y, z)

0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 0

Our goal is to show that any such Boolean function can be constructed
from certain simpler Boolean functions called gates. There are a number of
different kinds of gates but we begin with the three basic ones. The and-gate
is the function B2 → B defined by (x, y) 7→ x ·y. We use the following symbol
to represent this function.

x
y

x · y

The or-gate is the function B2 → B defined by (x, y) 7→ x + y. We use the
following symbol to represent this function.

x
y

x+ y

Finally, the not-gate is the function B → B defined by x 7→ x̄. We use the
following symbol to represent this function.

x x̄

Diagrams constructed using gates are called circuits and show how Boolean
functions can be computed as we shall see. Such mathematical circuits can
be converted into physical circuits with gates being constructed from simpler
circuit elements called transistors which operate like electronic switches. We
shall show how in the next section.
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Example 2.4.1. Here is a simple circuit.

x

y

z
(x · y) + z

Example 2.4.2. Because of the associativity of ·, the circuit

x

y

z
(x · y) · z

and the circuit

x

y

z

x · (y · z)

compute the same function. Similar comments apply to the operation +.

The main theorem in circuit design is the following. It is nothing other
than the Boolean algebra version of Theorem 1.6.6, the result that says that
every truth function arises as the truth table of a wff.

Theorem 2.4.3 (Fundamental theorem of circuit design). Every Boolean
function f : Bm → B can be constructed from and-gates, or-gates and not-
gates.

Proof. Assume that f is described by means of an input/output table. We
deal first with the case where f is the constant function to 0. In this case,

f(x1, . . . , xm) = (x1 · x1) · x2 · . . . · xm.

Next we deal with the case where the function f takes the value 1 exactly
once. Let a = (a1, . . . , am) ∈ Bm be such that f(a1, . . . , am) = 1. Define
m = y1 · . . . · ym, called the minterm associated with a, as follows:

yi =

{
xi if ai = 1
xi if ai = 0.
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Then f(x) = y1 · . . . · ym. Finally, we deal with the case where the func-
tion f is none of the above. Let the inputs where f takes the value 1 be
a1, . . . , ar, respectively. Construct the corresponding minterms m1, . . . ,mr,
respectively. Then

f(x) = m1 + . . .+ mr.

Example 2.4.4. We illustrate the proof of Theorem 2.4.3 by means of the
following input/output table.

x y z f(x, y, z)

0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 0

The three elements of B3 where f takes the value 1 are (0, 0, 1), (0, 1, 0) and
(1, 0, 0). The minterms corresponding to each of these inputs are x̄ · ȳ · z,
x̄ · y · z̄ and x · ȳ · z̄, respectively. It follows that

f(x, y, z) = x̄ · ȳ · z + x̄ · y · z̄ + x · ȳ · z̄.

We could if we wished attempt to simplify this Boolean expression. This
becomes important when we wish to convert it into a circuit.

Example 2.4.5. The input/output table below

x y x⊕ y
0 0 0
0 1 1
1 0 1
1 1 0

defines exclusive or or xor. By Theorem 2.4.3, we have that

x⊕ y = x̄ · y + x · ȳ.
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We may describe this by means of a parse tree just as we did in the case of
wff.

+

·

−

x

y

·

x −

y

This parse tree may be converted into a circuit in a series of stages but
requires two further circuit elements. First, we require two input wires: one
labelled x and one labelled y. But in the parse tree x occurs twice and y
occurs twice. We therefore need a new circuit element called fanout. This has
one input and then branches with each branch carrying a copy of the input.
In this case, we need one fanout with input x and two outward branches and
another with input y and two outward branches. In addition, we need to allow
wires to cross but not to otherwise interact. This is called interchange and
forms the second additional circuit element we need. Finally, we replace the
Boolean symbols by the corresponding gates and rotate the diagram ninety
degrees clockwise so that the inputs come in from the left and the output
emerges from the right. We therefore obtain the following circuit diagram.

y

x
x⊕ y

For our subsequent examples, it is convenient to abbreviate the circuit
for xor by means of a single circuit symbol called an xor-gate.
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x
y

x⊕ y

Example 2.4.6. Our next circuit is known as a half-adder which has two
inputs and two outputs and is defined by the following input/output table.

x y c s

0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

This treats the input x and y as numbers in binary and then outputs their
sum. Observe that s = x⊕ y and c = x · y. Thus using the previous example
we may construct a circuit that implements this function.

s c

x

y

Example 2.4.7. Our final circuit is known as a full-adder which has three
inputs and two outputs and is defined by the following input/output table.

x y z c s

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

This treats the three inputs as numbers in binary and adds them together.
The following circuit realizes this behaviour using two half-adders completed
with an or-gate.
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x
y

z

s

c

Example 2.4.8. Full-adders are the building blocks from which all arith-
metic computer circuits can be built. Specifically, suppose that we want to
add two four bit binary numbers together where we pad the numbers out
by adding 0 at the front if necessary. Denote them by m = a3a2a1a0 and
n = b3b2b1b0. The sum m + n in base 2 is computed in a similar way to
calculating a sum in base 10. Thus first calculate a0 + b0, write down the
sum bit, and pass any carry to be added to a1 + b1 and so on. Although
a0 + b0 can be computed by a half-adder subsequent additions may require
the addition of three bits because of the presence of a carry bit. For this
reason, we actually use four full-adders joined in series with the rightmost
full-adder having one of its inputs set to 0.

2.5 Transistors

Because of De Morgan’s laws, every Boolean expression is equal to one in
which only · and ¯ appear. We shall prove that and-gates and not-gates can
be constructed from transistors and so we will have proved that every com-
binatorial circuit can be constructed from transistors. We start by recalling
the input/output table of a transistor. I shall regard the transistor as a new
Boolean operation that I shall write as x2 y. This is certainly not standard
notation (there is none) but we only need this notation in this section.

x y x2 y
0 0 0
1 0 1
0 1 0
1 1 0

It is important to observe that x2 y 6= y2x. Observe that x2 y = x · ȳ. We
now carry out a couple of calculations.
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1. 12 y = 1ȳ = ȳ. Thus by fixing x = 1 we can negate y.

2. Observe that x · y = x · ¯̄y. Thus

x · y = x2 ȳ = x2(12 y).

We have therefore proved the following.

Theorem 2.5.1 (The fundamental theorem of transistors). Every combina-
torial circuit can be constructed from transistors.

Exercises 7

These cover all of Chapter 2

1. LetA = {♣,♦,♥,♠}, B = {♠,♦,♣,♥} and C = {♠,♦,♣,♥,♣,♦,♥,♠}.
Is it true or false that A = B and B = C? Explain.

2. Find all subsets of the set {a, b, c, d}.

3. Let X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. Write down the following subsets of
X:

(a) The subset A of even elements of X.

(b) The subset B of odd elements of X.

(c) C = {x : x ∈ X and x ≥ 6}.
(d) D = {x : x ∈ X and x > 10}.
(e) E = {x : x ∈ X and x is prime}.
(f) F = {x : x ∈ X and (x ≤ 4 or x ≥ 7)}.

4. Write down how many elements each of the following sets contains.

(a) ∅.
(b) {∅}.
(c) {∅, {∅}}.
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(d) {∅, {∅}, {∅, {∅}}}.

5. This question concerns the following diagram where A,B,C ⊆ X. Use
Boolean operators to describe each of the eight regions. For example,
region (1) is A ∩B ∩ C.

8

A C

B X

7

6 5
3

1
2 4

6. Draw Venn diagrams for each of the following sets.

(a) A ∪ (B ∩ C) ∪ (A ∩B) ∪ (A ∩B ∩ C).

(b) Show that

(A ∩B ∩ C) ∪ (A ∩B ∩ C) ∪ (A ∩B)

and
(A ∩B) ∪ (A ∩ C)

are equal.

(c) Show that

(A ∩B ∩ C) ∪ (A ∩B ∩ C) ∪B ∪ C

and X are equal.

7. (a) Prove that

a ∨ (b ∧ c) ∨ (¬a ∧ b) ∨ (a ∧ ¬b ∧ c)

and
a ∨ b

are logically equivalent.
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(b) Prove that

(¬a ∧ ¬b ∧ c) ∨ (¬a ∧ b ∧ c) ∨ (a ∧ ¬b)

and
(a ∧ ¬b) ∨ (¬a ∧ c)

are logically equivalent.

(c) Prove that
(a ∧ b ∧ c) ∨ (¬a ∧ b ∧ c) ∨ ¬b ∨ ¬c

is a tautology.

8. What is the connection between Questions 6 and 7 above?

9. Convert the following numbers into binary.

(a) 10.

(b) 42.

(c) 153.

(d) 2001.

10. Convert the following binary numbers into decimal.

(a) 111.

(b) 1010101.

(c) 111000111.

11. carry out the following additions in binary.

(a) 11 + 11.

(b) 10110011 + 1100111.

(c) 11111 + 11011.

The following questions are generally trickier and you may have to
play around with the algebra quite a bit before getting the answer out.
That’s normal.

12. Prove that b+ b = b for all b ∈ B in a Boolean algebra.
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13. Prove that 0b = 0 for all b ∈ B in a Boolean algebra.

14. Prove that 1 + b = 1 for all b ∈ B in a Boolean algebra.

15. Prove the following absorption laws in any Boolean algebra.

(a) a+ ab = a.

(b) a(a+ b) = a.

(c) a+ āb = a+ b.

(d) a(ā+ b) = ab.

16. The aim of this question is to prove that De Morgan’s laws follow from
the Boolean algebra axioms and do not need to be assumed.

(a) Prove that if a+ b = 1 and ab = 0 then b = ā.

(b) Prove that ¯̄a = a.

(c) Prove De Morgan’s laws.

i. (a+ b) = āb̄.

ii. ab = ā+ b̄.

17. Simplify each of the following Boolean algebra expressions as much as
possible. You might find it useful to draw Venn diagrams first.

(a) x+ x̄y.

(b) xȳx̄+ xyx̄

(c) x̄ȳz + xȳz̄ + xȳz.

(d) xy + xȳ + x̄y.

(e) x+ yz + x̄y + ȳxz.

18. Let B = {0, 1} be a two-element Boolean algebra. Prove that + must
behave like ∨, that · must behave like ∧ and that complementation
must behave like negation. [Hint: this question is not asking you to
show that {F, T} is a Boolean algebra.]

19. Define a new logical connective ? by p ? q = p∧¬q. How is this related
to the transistor? Does it form an adequate set of connectives on its
own?



Chapter 3

First-order logic

7. What we cannot speak about we must pass over in silence. —
Tractatus Logico-Philosophicus, Ludwig Wittgenstein.

PL is useful, as we have seen, but also very limited. The goal of this final
part of the course is to add features to PL that will make it more powerful
and more useful although there will be a price to pay in that the resulting
system will be intrinsically harder to work with. We shall study what is
known as first-order logic (FOL) and sometimes predicate logic. Essentially

FOL = PL + predicates + quantifiers.

This logic is the basis of applications of logic to CS, such as PROLOG. For
mathematics, we have the following

Mathematics = Set theory + FOL

3.1 Splitting the atom: names, predicates and

relations

Recall that a statement is a sentence which is capable of being either true or
false. In PL, statements can only be analysed further in terms of the usual
PL connectives until we get to atoms. The atoms cannot then be further

93
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analysed. We shall show how, in fact, atoms can be split by using some new
ideas.

A name is a word that picks out a specific individual. For example, 2, π,
Darth Vader are all names. Once something has been named, we can refer
to it by that name.

At its simplest, a sentence can be analysed into a subject and a predicate.
For example, the sentence ‘grass is green’ has ‘grass’ as its subject and ‘is
green’ as its predicate. To make the nature of the predicate clearer, we
might write ‘— is green’ to indicate the slot into which a name could be
fitted. Or, more formally, we could use a variable and write ‘x is green’. We
could symbolize this predicate thus ‘G(x) = ‘x is green’. We may replace
the variable x by names to get honest statements that may or may not be
true. Thus G(grass) is the statement ‘grass is green’ whereas G(cheese) is
the statement ‘cheese is green’. This is an example of a 1-place predicate
because there is exactly one slot into which a name can be placed to yield a
statement. Other examples of 1-place predicates are: ‘x is a prime’ and ‘x
likes honey’.

There are also 2-place predicates. For example,

P (x, y) = ‘x is the father of y’

is such a predicate because there are two slots that can be replaced by names
to yield statements. Thus (spoiler alert) P (Darth Vader,Luke Skywalker) is
true but P (Winnie-the-Pooh,Darth Vader) is false.

More generally, P (x1, . . . , xn) denotes an n-place predicate or an n-ary
predicate. We say that the predicate has arity n. Here x1, . . . , xn are n
variables that mark the n positions into which names can be slotted.

Most of the predicates we shall meet will have arities 1 or 2. But in theory
there is no limit. Thus F (x1, x2, x3) is the 3-place predicate ‘x1 fights x2 with
a x3’. By inserting names, we get the statement F (Luke Skywalker,Darth Vader, banana)
(deleted scene).

In FOL, names are called constants and are usually denoted by the rather
more mundane a, b, c, . . . or a1, a2, a3 . . .. Variables are denoted by x, y, z . . .
or x1, x2, x3, . . .. They have no fixed meaning but serve as place-holders into
which names can be slotted.

An atomic formula is a predicate whose slots are filled with either vari-
ables or constants.

We now turn to the question of what predicates do. 1-place predicates
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describe sets1. Thus the 1-place predicate P (x) describes the set

P = {a : P (a) is true }
although this is usually written simply as

P = {a : P (a)}.
For example, if P (x) is the 1-place predicate ‘x is a prime’ then the set it
describes is the set of prime numbers. To deal with what 2-place predicates
describe we need some new notation. An ordered pair is written (a, b) where
a is the first component and b is the second component. Observe that we use
round brackets. As the name suggests: order matters and so (a, b) 6= (b, a),
unlike in set notation. Let P (x, y) be a 2-place predicate. Then it describes
the set

P = {(a, b) : P (a, b) is true }
which is usually just written

P = {(a, b) : P (a, b)}.
A set of ordered pairs where the elements are taken from some set X is
called a binary relation on the set X. Thus 2-place predicates describe binary
relations. We often denote binary relations by Greek letters. There is a nice
graphical way to represent binary relations at least when the set they are
defined on is not too big. Let ρ be a binary relation defined on the set X.
We draw a directed graph or digraph of ρ. This consists of vertices labelled by
the elements of X and arrows where an arrow is drawn from a to b precisely
when (a, b) ∈ ρ.

Example 3.1.1. The binary relation

ρ = {(1, 1), (1, 2), (2, 3), (4, 1), (4, 3), (4, 5), (5, 3)}
is defined on the set X = {1, 2, 3, 4, 5}. Its corresponding directed graph is

1 2

34

5

1At least informally. There is the problem of Russell’s paradox. How that can be dealt
with, if indeed it can be, is left to a more advanced course.
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Example 3.1.2. Binary relations are very common in mathematics. Here
are some examples.

1. The relation x | y is defined on the set of natural numbers N =
{0, 1, 2, 3, . . .} if x exactly divides y.

2. The relations ≤ (less than or equal to) and < (strictly less than) are
defined on Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}.

3. The relation ⊆ (is a subset of) is defined between sets.

4. the relation ∈ (is an element of) is defined between sets.

5. The relation ≡ (logical equivalence) is defined on the set of wff.

For convenience, I shall only use 1-place predicates and 2-place predicates
(and so also only sets and binary relations), but, in principle, there is no limit
on the arities of predicates and we can study ordered n-tuples just as well as
ordered pairs.

3.2 Structures

We begin with two examples.

Example 3.2.1. Here is part of the family tree of some Anglo-Saxon kings
and queens.

♂Egbert = Redburga ♀

♂Ethelwulf = Osburga ♀

♂Ethelbald ♂Alfred = Ealhswith ♀

♀Ethelfleda ♂Edward ♀Ælfthryth ♀Ethelgiva
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We shall analyse the mathematics behind this family tree. First, we have
a set D of kings and queens called the domain. This consists of eleven
Tolkienesque elements

D =

{
Egbert, Redburga, Ethelwulf, Osburga, Ethelbald, Alfred,

Eahlswith, Ethelfleda, Edward, Ælfthryth, Ethelgiva

}
.

But we have additional information. Beside each name is a symbl ♂ or ♀
which means that that person is respectively male or female. This is just a
way of defining two subsets of D:

M = {Egbert,Ethelwulf,Ethelbald,Alfred,Edward}

and

F = {Redburga,Osburga,Eahlswith,Ethelfleda,Ælfthryth,Ethelgiva}.

There are also two other peices of information. The most obvious are the
lines linking one generation to the next. This is the binary relation defined
by the 2-place predicate ‘x is the parent of y’. It is the set of ordered pairs
π. For example,

(Ethelwulf,Alfred), (Osburga,Alfred) ∈ π.

A little less obvious is the notation = which stands for the binary relation
defined by the 2-place predicate ‘x is married to y’. It is the set of ordered
pairs µ. For example,

(Egbert,Redburga), (Redburga,Egbert), (Ethelwulf,Osburga) ∈ µ.

It follows that the information contained in the family tree is also contained
in the following package

(D,M,F, π, µ).

Example 3.2.2. This looks quite different at first from the previous example
but is mathematically very closely related to it. Define

(N,E,O,≤, |)

where E and O are, respectively, the sets of odd and even natural numbers
and ≤ and | are binary relations.

We define a structure to consist of a non-empty set D, called the domain,
together with a finite selection of subsets, binary relations, etc.

FOL is a language that will enable us to talk about structures.
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3.3 Quantification: ∀, ∃
We begin with an example. Let A(x) be the 1-place predicate ‘x is made of
atoms’. I want to say that ‘everything is made from atoms’. In PL, I have
no choice but to use infinitely many conjunctions

A(jelly) ∧ A(ice-cream) ∧ A(blancmange) ∧ . . .
This is inconvenient. We get around this by using what is called the universal
quantifier ∀. We write

(∀x)A(x)

which should be read ‘for all x, x is made from atoms’ or ‘for each x, x is
made from atoms’. The variable does not have to be x, we have all of these
(∀y), (∀z) and so on. As we shall see, you should think of (∀x) and its ilk as
being a new unary connective. Thus

∀x

P

is the parse tree for (∀x)P .
The corresponding infinite disjunction

P (a) ∨ P (b) ∨ P (c) ∨ . . .

is true when at least one of the terms of true. There is a corresponding
existential quantifier ∃. We write

(∃x)A(x)

which should be read ‘there exists an x, such that P (x) is true’ or ‘there is
at least one x, such that P (x) is true’. The variable does not have to be x,
we have all of these (∃y), (∃z) and so on. You should also think of (∃x) and
its ilk as being a new unary connective. Thus

∃x

P

is the parse tree for (∃x)P .
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3.4 Syntax

A first-order language consists of a choice of predicate letters with given ari-
ties. Which ones you choose depends on what problems you are interested in.
In addition to our choice of predicate letters, we also have, for free, our logical
symboms carried forward from PL: ¬,∧,∨,→,↔,⊕; we also have variables
x, y, . . . , x1, x2, . . .; constants (names) a, b . . . a1, a2, . . .; and quantifiers (∀x),
(∀y), . . . (∀x1), (∀x2), . . . . Recall that an atomic formula is a predicate letter
with variables or constants inserted in all the available slots. We can now
define a formula or wff in FOL.

1. All atomic formulae are wff.

2. If A and B are wff so too are (¬A), (A ∧ B), (A ∨ B), (A → B),
(A ↔ B), (A ⊕ B), and (∀x)A, for any variable x and (∃x)A for any
variable x.

3. All wff arise by repeated application of steps (1) or (2) a finite number
of times.

I should add that I will carry forward to FOL from PL the same conventions
concerning the use of brackets without further comment.

We may adapt parse trees to FOL. An expression such as P (x1, x2, x3),
for example, gives rise to the parse tree

P

x1 x2 x3

The quantifiers (∀x) and (∃x) are treated as unary operators as we have seen.
The leaves of the parse tree are either variables or constants.

Example 3.4.1. The formula (∀x)[(P (x) → Q(x)) ∧ S(x, y)] has the parse
tree



100 CHAPTER 3. FIRST-ORDER LOGIC

∀x

∧

→

P

x

Q

x

S

x y

Sentences

We now come to a fundamental, and quite difficult, definition. Choose
any vertex v in a tree. The part of the tree, including v itself, that lies below
v is clearly also a tree. It is called the subtree determined by v. In a parse
tree, the subtree determined by an occurrence of (∀x) is called the scope of
this occurrence of the quantifier. Similarly for (∃x). An occurrence of a
variable x is called bound if it occurs within the scope of an occurrence of
either (∀x) and (∃x). Otherwise, this occurrence is called free. Observe that
the occurrence of x in both (∀x) and (∃x) is always bound.

Example 3.4.2. Consider the formula (P (x) → Q(y)) → (∃y)R(x, y). The
scope of (∃y) is R(x, y). Thus the x occurring in R(x, y) is free and the y
occurring in R(x, y) is bound.

A formula that has a free occurrence of some variable is called open oth-
erwise it is called closed. A closed wff is called a sentence. FOL is about
sentences.

Example 3.4.3. Consider the wff

(∃x)(F (x) ∧G(x))→ ((∃x)F (x) ∧ (∃x)G(x)).

I claim this is a sentence. There are three occurrences of (∃x). The first
occurrence binds the x in F (x) ∧ G(x). The second occurrence binds the
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occurrence of x in the second occurrence of F (x). The third occurrence
binds the occurrence of x in the second occurrence of G(x). It follows that
every occurrence of x in this wff is bound and there are no other variables.
Thus the wff is closed as claimed.

I shall explain why sentences are the natural things to study once I have
defined the semantics of FOL.

3.5 Semantics

Let L be a first-order language. For concreteness, suppose that it consists of
two predicate letters where P is a 1-place predicate letter and Q is a 2-place
predicate letter. An interpretation I of L is any structure (D,A, ρ) where D,
the domain, is a non-empty set, A ⊆ D is a subset and ρ is a binary relation
on D. We interpret P as A and Q as ρ. Thus the wff (∃x)(P (x) ∧ Q(x, x))
is interpreted as (∃x ∈ D)((x ∈ A)∧ ((x, x) ∈ ρ)). Under this interpretation,
every sentence S in the language makes an assertion about the elements of
D using A and ρ. We say that I is a model of S, written I � S, if S is true
when interpreted in this way in I. A sentence S is said to be universally (or
logically) valid, written � S, if it is true in all interpretations.

Whereas in PL we studied tautologies, in FOL we study logically
valid formulae.

We write S1 ≡ S2 to mean that the sentences S1 and S2 are true in exactly
the same interpretations. It is not hard to prove that this is equivalent to
showing that � S1 ↔ S2.

The following example should help to clarify these definitions. Specifi-
cally, why it is sentences that we are interested in.

Example 3.5.1. Interpret the 2-place predicate symbol P (x, y) as the binary
relation ‘x is the father of y’ where the domain is the set of people. Observe
that the phrase ‘x is the father of y’ is neither true nor false since we know
nothing about x and y. Consider now the wff (∃y)P (x, y). This says ‘x is
a father’. This is still neither true nor false since x is not specified. Finally,
consider the wff S1 = (∀x)(∃y)P (x, y). This says ‘everyone is a father’.
Observe that it is a sentence and that it is also a statement. In this case, it
is false. I should add that in reading a sequence of quantifiers work your way
in from left to right. The new sentence S2 = (∃x)(∀y)P (x, y) is a different
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statement. It says that there is someone who is the father of everyone. This
is also false. The new sentence S3 = (∀y)(∃x)P (x, y) says that ‘everyone has
a father’ which is true.

We now choose a new interpretation. This time we interpret P (x, y) as
‘x ≤ y’ and the domain as the set N = {0, 1, 2, . . .} of natural numbers. The
sentence S1 says that for each natural number there is a natural number at
least as big. This is true. The sentence S2 says that there exists a natural
number that is less than or equal to any natural number. This is true because
0 has exactly that property. Finally, sentence S3 says that for each natural
number there is a natural number that is no bigger which is true.

As we see in the above examples, sentences say something, or rather can
be interpreted as saying something. Thus a sentence interpreted in some
structure is a statement about that structure and is therefore true or false in
that interpretation.

I should add that sentences also arise (and this is a consequence of the
definition but perhaps not obvious), when constants, that is names, are sub-
stituted for variables. Thus ‘Darth Vader is the father of Winnie-the-Pooh’
is a sentence, that happens to be false (and I believe has never been uttered
by anyone before).

3.6 De Morgan’s laws for ∀ and ∃
The universal quantifier ∀ is a sort of infinite version of ∧ and the existential
quantifier is a sort of infinite version of ∨. The following result is therefore
not surprising.

Theorem 3.6.1 (De Morgan for quantifiers).

1. ¬(∀x)A ≡ (∃x)¬A.

2. ¬(∃x)A ≡ (∀x)¬A.

3.7 Truth trees for FOL

We begin with a motivating example.

Example 3.7.1. Consider the following famous argument.
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1. All man are mortal.

2. Socrates is a man.

3. Therefore socrates is mortal.

Here (1) and (2) are the assumptions and (3) is the conclusion. If you agree
to the truth of (1) and (2) then you are obliged to accept the truth of (3).
This cannot be verified using PL but we can use what we have introduced so
far to analyse this argument and prove that it is valid. We introduce some
predicate symbols. We interpret M(x) to be ‘x is mortal’, and H(x) to be
‘x is a man’. Our argument above has the following form.

1. (∀x)(H(x)→M(x)).

2. H(Socrates).

3. Therefore M(Socrates).

We prove that this argument is valid. If (1) is true, then it is true for every
named individual a and so H(a)→M(a). Thus for the particular individual
Socrates we have that H(Socrates) → M(Socrates). But we are told in (2)
that H(Socrates) is true. We are now in the world of PL and we have that

H(Socrates)→M(Socrates), H(Socrates) �M(Socrates).

Thus M(Socrates) is true.

We now generalize the key idea used in the above argument. Given a
sentence (∀x)A(x), where A(x) here means some wff containing x, then if we
replace all free occurrences of x in A(x) by a constant a, we have instantiated
the universal quantifier at a. There is a similar procedure for existential
quantification.

Example 3.7.2. If we instantiate the wff (∃y)[(∃x)P (x) → P (y)] at y by
the constant a we get the wff (∃x)P (x)→ P (a).

The leading idea in what follows is this: convert FOL sentences into PL
wff by means of instantiation.

Truth tree rules for FOL
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• All PL truth tree rules are carried forward.

• De Morgan’s rules for quantifiers

¬(∀x)A

(∃x)¬A

¬(∃x)A

(∀x)¬A

• New name rule.

(1) (∃x)A(x)X

A(a)

where we add A(a) at the bottom of all branches containing (1) and
where a is a constant that does not already appear in the branch con-
taining (1).

• Never ending rule.

(2) (∀x)A(x) ∗

A(a)

where we add A(a) at the bottom of a branch containing (2) and a
is any constant appearing in the branch containing (2) or a is a new
constant if no constants have yet been introduced. [The rationale for
the latter is that all domains are non-empty]. We have used the ∗ to
mean that the wff is never used up.

We use truth trees for FOL is the same way as in PL.

• To prove that � X we show that some truth tree with root ¬X closes.

• To prove that X1, . . . , Xn � X we show that some truth tree with root
X1, . . . , Xn,¬X closes.

• To prove that X ≡ Y prove that � X ↔ Y .

We shall describe how these rules are applied by means of examples.

Examples 3.7.3.
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1. Show that the following is a valid argument

(∀x)(H(x)→M(x)), H(a) �M(a).

Here is the truth tree.

(∀x)(H(x)→M(x)) ∗
H(a)
¬M(a)

H(a)→M(a)X

7¬H(a) M(a) 7

2. Show that the following argument is valid

(∃x)(∀y)F (x, y) � (∀y)(∃x)F (x, y).

Here is the truth tree.

(∃x)(∀y)F (x, y) X
¬(∀y)(∃x)F (x, y)X

(∃y)¬(∃x)F (x, y)X

(∃y)(∀x)¬F (x, y)X

(∀y)F (a, y) ∗

(∀x)¬F (x, b) ∗

F (a, b)

¬F (a, b) 7

3. Prove that

� (∃x)(A(x) ∧B(x))→ ((∃x)A(x) ∧ (∃x)B(x)).

Here is the truth tree.
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¬((∃x)(A(x) ∧B(x))→ ((∃x)A(x) ∧ (∃x)B(x))) X

(∃x)(A(x) ∧B(x)) X
¬((∃x)A(x) ∧ (∃x)B(x)) X

A(a) ∧B(a) X

A(a)
B(a)

¬(∃x)A(x)

(∀x)¬A(x) ∗

¬A(a) 7

¬(∃x)B(x)

(∀x)¬B(x) ∗

¬B(a) 7

4. Prove that (∀x)(∀y)A(x, y) ≡ (∀y)(∀x)A(x, y). Here is the truth tree.

¬((∀x)(∀y)A(x, y)↔ (∀y)(∀x)A(x, y)) X

(∀x)(∀y)A(x, y) ∗
¬(∀y)(∀x)A(x, y) X

(∃y)(∃x)¬A(x, y) X

(∃x)¬A(x, a) X

¬A(b, a)

(∀y)A(b, y) ∗

A(b, a) 7

¬(∀x)(∀y)A(x, y)
(∀y)(∀x)A(x, y) ∗

and similarly

There are, however, some major differences between PL and FOL when
it comes to the behaviour of truth trees.

Examples 3.7.4.

1. Truth trees can have infinite branches. Here is an example.
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(∀x)(∃y)R(x, y) ∗

(∃y)R(a1, y) X

R(a1, a2)

(∃y)R(a2, y) X

R(a2, a3)

and so on

2. There are sentences that have no finite models. See Question 11 of
Exercises 9.

3. The order in which the rules for truth trees are applied in FOL does
matter. If we place at the root the wff (∀x)(∃y)P (x, y) and P (a)∧¬P (a)
then we can get an infinite tree if we repeatedly apply the tree rules
to the first wff but an immediate contradiction, and so a closed finite
truth tree, if we start with the second wff instead.

3.8 The Entscheidungsproblem

Let’s start with PL. If I give you a wff, you can decide, using a truth table for
example, in a finite amount of time whether that wff is a tautology or not.
The decision you make does not require any intelligence; it uses an algorithm.
We say that the problem of deciding whether a wff in PL is a tautology is
decidable.

Let’s turn now to FOL. The analogous question of whether a formula
in FOL is universally valid or not is usually known by its German form,
the Entscheidungsproblem, because it was formulated by the great German
mathematician David Hilbert in 1928. Unlike the case of PL, there is no
algorithm for deciding this question. This was proved independently in 1936
by Alonzo Church in the US and by Alan Turing in the UK. Turing’s reso-
lution to this question was far-reaching since it involved him in formulating,
mathematically, what we would now call a computer.

Exercises 8
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The following were adapted from Chapter 1 of Volume II of [15]. There are
some liberties taken in the solutions. Read [15] for more background.

In the following exercises, use this transcription guide:

a: Athelstan (name)

e: Ethelgiva (name)

c: Cenric (name)

M(x): x is marmalade — the colour, not what you put on your toast (1-place
predicate)

C(x): x is a cat (1-place predicate)

L(x, y): x likes y (2-place predicate)

T (x, y): x is taller than y (2-place predicate)

1. Transcribe the following formulae into English.

(a) ¬L(a, a).

(b) L(a, a)→ ¬T (a, a).

(c) ¬(M(c) ∨ L(c, e)).

(d) C(a)↔ (M(a) ∨ L(a, e)).

(e) (∃x)T (x, c).

(f) (∀x)L(a, x) ∧ (∀x)L(c, x).

(g) (∀x)(L(a, x) ∧ L(c, x)).

(h) (∃x)T (x, a) ∨ (∃x)T (x, c).

(i) (∃x)(T (x, a) ∨ T (x, c)).

(j) (∀x)(C(x)→ L(x, e)).

(k) (∃x)(C(x) ∧ ¬L(e, x)).

(l) ¬(∀x)(C(x)→ L(e, x)).

(m) (∀x)[C(x)→ (L(c, x) ∨ L(e, x))].
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(n) (∃x)[C(x) ∧ (M(x) ∧ T (x, c))].

2. For each formula in Question 1, draw its parse tree.

3. Transcribe the following English sentences into formulae.

(a) Everyone likes Ethelgiva.

(b) Everyone is liked by either Cenric or Athelstan.

(c) Either everyone is liked by Athelstan or everyone is liked by Cen-
ric.

(d) Someone is taller than both Athelstan and Cenric.

(e) Someone is taller than Athelstan and someone is taller than Cen-
ric.

(f) Ethelgiva likes all cats.

(g) All cats like Ethelgiva.

(h) Ethelgiva likes some cats.

(i) Ethelgiva likes no cats.

(j) Anyone who likes Ethelgiva is not a cat.

(k) No one who likes Ethelgiva is a cat.

(l) Somebody who likes Athelstan likes Cenric.

(m) No one likes both Athelstan and Cenric.

Exercises 9

1. This question is about interpreting sequences of quantifiers. Remember
that ∀x can be read both as for all x as well as for each x. Consider
the following 8 sentences involving the 2-place predicate P .

(a) (∀x)(∀y)P (x, y).

(b) (∀x)(∃y)P (x, y).

(c) (∃x)(∀y)P (x, y).
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(d) (∃x)(∃y)P (x, y).

(e) (∀y)(∀x)P (x, y).

(f) (∃y)(∀x)P (x, y).

(g) (∀y)(∃x)P (x, y).

(h) (∃y)(∃x)P (x, y).

Consider two interpretations. The first has domain N, the set of natural
numbers, and P is interpreted as≤. The second has domain ‘all people’,
and P is interpreted by the binary relation ‘is the father of’. Write
down what each of the sentences means in each interpretation and
state whether the interpretation is a model of the sentence or not. You
may use the fact that (a)≡(e) and (d)≡(h).

2. Prove that
(∀x)R(x) |= (∃x)R(x).

Explain informally why it is a valid argument.

3. Prove that
(∀x)(∀y)R(x, y) |= (∀x)R(x, x).

4. Prove that
(∃x)(∃y)F (x, y) ≡ (∃y)(∃x)F (x, y).

5. Prove that

(∀x)(P (x) ∧Q(x)) ≡ ((∀x)P (x) ∧ (∀x)Q(x)).

6. Prove that

(∃x)(P (x) ∨Q(x)) ≡ ((∃x)P (x) ∨ (∃x)Q(x)).

7. Prove that

((∀x)P (x) ∨ (∀x)Q(x))→ (∀x)(P (x) ∨Q(x))

is logically valid. On the other hand, show that the following is not
logically valid by constructing a counterexample

(∀x)(P (x) ∨Q(x))→ ((∀x)P (x) ∨ (∀x)Q(x)).
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8. Prove that
(∃x)[D(x)→ (∀y)D(y)]

is universally valid. Interpret D(x) as ‘x drinks’ with domain people.
What does the above wff say in this interpretation? Does this seem
plausible? Resolve the issue.

9. For each of the following formulae draw a parse tree and demonstrate
that the formula is closed and therefore a sentence. Then show that
each sentence is logically valid.

(a) (∀x)P (x)→ (∃x)P (x).

(b) (∃x)P (x)→ (∃y)P (y).

(c) (∀y)((∀x)P (x)→ P (y)).

(d) (∃y)(P (y)→ (∀x)P (x)).

(e) ¬(∃y)P (y)→ [(∀y)((∃x)P (x)→ P (y))].

10. This question marks the beginning of using our logic in mathematical
proof. Let R be a 2-place predicate symbol. We say that an interpre-
tation of R has the respective property (in italics) if it is a model of
the corresponding sentence.

• Reflexive: (∀x)R(x, x).

• Irreflexive: (∀x)¬R(x, x).

• Symmetric: (∀x)(∀y)(R(x, y)→ R(y, x)).

• Asymmetric: (∀x)(∀y)(R(x, y)→ ¬R(y, x)).

• Transitive: (∀x)(∀y)(∀z)(R(x, y) ∧R(y, z)→ R(x, z)).

Illustrate these definitions by using directed graphs.

Prove the following using truth trees.

(a) If R is asymmetric then it is irreflexive.

(b) If R is transitive and irreflexive then it is asymmetric.

11. Put S = F1 ∧ F2 ∧ F3 where

• F1 = (∀x)(∃y)R(x, y).
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• F2 = (∀x)¬R(x, x).

• F3 = (∀x)(∀y)(∀z)[R(x, y) ∧R(y, z)→ R(x, z)].

Prove first that the following is a model of S: the domain is N and
R(x, y) is interpreted as x < y. Next prove that S has no finite models.
That is, no models in which the domain is finite.



Chapter 4

2015 Exam paper and solutions

4.1 Exam paper

Each question is worth 20 marks

1. (a) Construct truth-tables for each of the following wff.

i. p ∧ q.
ii. p ∨ q.

iii. p→ q.

iv. p↔ q.

[1 mark each]

(b) Construct truth-tables and parse trees for each of the following
wff.

i. ¬p ∨ q.
ii. (p ∨ q) ∧ ¬(p ∧ q).

iii. ¬(p ∨ q).
iv. ¬(p ∧ q).

[1 mark each]

(c) Construct the truth-table of (p↔ q) ∧ (p→ ¬r). [4 marks]

(d) Construct a wff in disjunctive normal form that has the following

113
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truth-table. [4 marks]

p q r A

T T T F
T T F T
T F T F
T F F F
F T T T
F T F F
F F T T
F F F F

(e) Prove using truth-tables that p ∨ (q ∧ r) is logically equivalent to
(p ∨ q) ∧ (p ∨ r). [4 marks]

2. (a) Define the binary connective p ↓ q = ¬(p∨ q). Show that p→ q is
logically equivalent to a wff in which the only binary connective
that appears is ↓. [4 marks]

(b) Show that the wff (x ∧ ¬y) ∨ (¬x ∧ y) is logically equivalent to a
wff in CNF (conjunctive normal form). [4 marks]

(c) Show that p→ q,¬p→ q � q is a valid argument. [4 marks]

(d) Use truth trees to determine whether the following is a tautology

[(p→ q) ∧ (q → r)]→ [(p ∨ q)→ r].

[4 marks]

(e) Use truth trees to determine whether the following is a valid
argument

p ∨ q, p→ r, q → s � r ∨ s.

[4 marks]

3. In this question, you should use the Boolean algebra axioms listed at
the end of this exam paper. You should also assume that a2 = a and
a+ a = a for all elements a of a Boolean algebra.

(a) Prove a0 = 0. [2 marks ]

(b) Prove a+ 1 = 1. [2 marks ]
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(c) Prove a+ ab = a. [2 marks ]

(d) Prove a+ āb = a+ b. [2 marks]

(e) Draw a Venn diagram to illustrate the following Boolean expres-
sion.

x̄ ȳ z̄ + x̄yz̄ + xȳ z̄ + xyz̄.

[2 marks]

(f) Simplify the Boolean expression

x̄ ȳ z̄ + x̄yz̄ + xȳ z̄ + xyz̄

as much as possible using properties of Boolean algebras. Any
properties used should be clearly stated. [4 marks]

(g) The following diagram shows a circuit with three inputs and two
outputs. The symbols are recalled at the end of the exam paper.

x
y

z

u

v

Draw up an input/output table for this circuit and describe what
it is doing. [6 marks]

4. (a) Let A and B be 1-place predicate symbols. Construct a structure
in which (∃x)A(x) ∧ (∃x)B(x) is true but (∃x)(A(x) ∧ B(x)) is
false. [10 marks]

(b) Prove using truth trees that

(∃x)(A(x) ∧B(x))→ [(∃x)A(x) ∧ (∃x)B(x)]

is universally valid. [10 marks]
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Boolean algebra axioms

(B1) (x+ y) + z = x+ (y + z).

(B2) x+ y = y + x.

(B3) x+ 0 = x.

(B4) (x · y) · z = x · (y · z).

(B5) x · y = y · x.

(B6) x · 1 = x.

(B7) x · (y + z) = x · y + x · z.

(B8) x+ (y · z) = (x+ y) · (x+ z).

(B9) x+ x̄ = 1.

(B10) x · x̄ = 0.

Circuit symbols

x
y

x · y x
y

x+ y
x
y

x⊕ y
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4.2 Solutions

1. (a) For each correct truth table [1 mark].

p q (i) p ∧ q (ii) p ∨ q (iii) p→ q (iv) p↔ q
T T T T T T
T F F T F F
F T F T T F
F F F F T T

(b) For each correct truth table [1
2

mark].

p q (i) (ii) (iii) (iv)
T T T F F F
T F F T F T
F T T T F T
F F T F T T

For each correct parse tree [1
2

mark].

∨

¬

p

q

∧

∨

p q

¬

∧

p q

¬

∨

p q

¬

∧

p q
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(c) Correct truth table [4 marks].

p q r (p↔ q) ∧ (p→ ¬r)
T T T F
T T F T
T F T F
T F F F
F T T F
F T F F
F F T T
F F F T

(d) (p ∧ q ∧ ¬r) ∨ (¬p ∧ q ∧ r) ∨ (¬p ∧ ¬q ∧ r) [4 marks].

(e) Construct truth tables for p∨(q∧r) and (p∨q)∧(p∨r) separately
and show that they are equal.

p q r p ∨ (q ∧ r)
T T T T
T T F T
T F T T
T F F T
F T T T
F T F F
F F T F
F F F F

2. (a) Now
p→ q ≡ ¬p ∨ q ≡ ¬(¬(¬p ∨ q)) ≡ ¬(¬p ↓ q).

But ¬x ≡ x ↓ x. Thus

p→ q ≡ ((p ↓ p) ↓ q) ↓ ((p ↓ p) ↓ q).

[4 marks]

(b) Use the distributivity law to get

(x ∧ ¬y) ∨ (¬x ∧ y) ≡ (x ∨ ¬x) ∧ (¬y ∨ ¬x) ∧ (x ∨ y) ∧ (¬y ∨ y).

This can be simplified further though this is not required. [4
marks]
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(c) Any correct method allowed (including truth trees). For example,
show that

� ((p→ q) ∧ (¬p→ q))→ q.

(d) All the branches in the following truth tree close and so the wff is
a tautology [4 marks].

¬((p→ q) ∧ (q → r)→ ((p ∨ q)→ r)) X

(p→ q) ∧ (q → r)X
¬((p ∨ q)→ r) X

p→ qX
q → rX

p ∨ qX
¬r

¬p

¬q

p 7 q 7

r 7

q

7¬q r 7

(e) All the branches in the following truth tree close and so the argu-
ment is valid [4 marks].

p ∨ qX
p→ rX
q → s X
¬(r ∨ s)X

¬r
¬s

¬p

7p q

7¬q s 7

r 7
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3. (a)

a · 0 = a · (a · ā) by (B10)

= (a · a) · ā by (B4)

= a · ā since a2 = a

= 0 by (B10).

(b) This is the dual proof to (a).

a+ 1 = a+ (a+ ā) by (B9)

= (a+ a) + ā by (B1)

= a+ ā since a+ a = a

= 1 by (B9).

(c)

a+ a · b = a · 1 + a · b by (B6)

= a · (1 + b) by (B7)

= a · 1 by (b) above

= a by (B6).

(d)

a+ b = a+ 1b by (B6)

= a+ (a+ ā)b by (B9)

= a+ ab+ āb by (B7) and (B5)

= a+ āb by (c) above

(e) Label three circles X, Y and Z, intersecting and enclosed in a
rectangle. Then the Venn diagram is the complement of Z.

(f) By (e), we expect z̄. Here is a proof.

x̄ ȳ z̄ + x̄yz̄ + xȳ z̄ + xyz̄ = (x̄ ȳ + x̄y + xȳ + xy)z̄ by (B7)

= (x̄(ȳ + y) + x(ȳ + y))z̄ by (B7)

= (x̄1 + x1)z̄ by (B9)

= (x̄+ x)z̄ by (B6)

= 1z̄ by (B9)

= z̄ by (B6).
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(g) This is a full-adder.

x y z u v

1 1 1 1 1
1 1 0 1 0
1 0 1 1 0
1 0 0 0 1
0 1 1 1 0
0 1 0 0 1
0 0 1 0 1
0 0 0 0 0

4. (a) There are many correct answers. Here is one. Define the domain
to be N. Interpret A(x) as ‘x is even’ and B(x) as ‘x is odd’.
Now in this interpretation, (∃x)A(x)∧ (∃x)B(x) is true since 0 is
even and 1 is odd. However, (∃x)(A(x)∧B(x)) is false since there
is no number that is both odd and even. [10 marks]

(b) The truth tree below closes and so the wff is universally valid.

¬((∃x)(A(x) ∧B(x))→ ((∃x)A(x) ∧ (∃x)B(x))) X

(∃x)(A(x) ∧B(x))X
¬((∃x)A(x) ∧ (∃x)B(x))X

A(a) ∧B(a)X

A(a)
B(a)

¬(∃x)A(x)X

(∀x)¬A(x)∗

¬A(a) 7

¬(∃x)B(x)X

(∀x)¬B(x)∗

¬B(a) 7
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