
An Abridged Introduction to C

Foreword

This is intended as an introduction to the programming language C for students
who are already fluent in at least another programming language like JavaScript,
Python, Perl, PHP, FORTRAN, Java, etc.

It is also a hands-on, example-based exposition.

Among other things, this means that many details are left for the student to pick
them up along the way either by analogy with other programming languages
they know, or by promptly asking the teacher.

C

What is C

C is a high-level language. This means programming in C is based on code
that resembles a familiar, natural language, in this case English. Other examples
of high-level languages, in addition to those mentioned in the foreword, could be
C++ or Haskell.

A counter-example, that is, an example of a language that is not a high-level
one, would be the mnemonic-based, programming language called assembler.

This, however, is actually a relative concept: assembler is at a higher-level than
writing directly in binary code, i.e., 0s and 1s!

What follows is an example of program in assembler written for the Mac OSX
and to be assembled with the NASM assembler:

; helloworld.asm - a "hello, world" program using NASM written in Assembler for the MacOSX
; To create an executable called 'helloworld-as' from a code file called 'helloworld.asm':
; 1) nasm -f macho helloworld.asm (for Mach OSX) | nasm -f elf helloworld.asm (for Linux)
; 2) ld -o helloworld-as -e mystart helloworld.o

section .text

global mystart ; make the main function externally visible

mystart:

; 1 print "hello, world"

; 1a prepare the arguments for the system call to write

1

push dword mylen ; message length
push dword mymsg ; message to write
push dword 1 ; file descriptor value (stdout)

; 1b make the system call to write
mov eax, 0x4 ; system call number for write
sub esp, 4 ; OS X (and BSD) system calls needs "extra space" on stack.
int 0x80 ; make the actual system call

; 1c clean up the stack
add esp, 16 ; 3 args * 4 bytes/arg + 4 bytes extra space = 16 bytes

; 2 exit the program

; 2a prepare the argument for the sys call to exit
push dword 0 ; exit status returned to the operating system

; 2b make the call to sys call to exit
mov eax, 0x1 ; system call number for exit
sub esp, 4 ; OS X (and BSD) system calls needs "extra space" on stack
int 0x80 ; make the system call

section .data

mymsg db "hello, world", 0xa ; string with a carriage-return
mylen equ $-mymsg ; string length in bytes

In that sense, C is usually referred to as low-level language when compared
to more modern ones like Haskell or to scripting languages like Python.

In general, the strength of a lower-level language lies in a more direct access
to the machine’s components and more freedom to do almost anything. That’s
certainly the case of assembler and, in lesser way, C. That comes at a cost,
however.

Indeed, a high-level languages also means that the code you write has a higher
level of portability, that is, it can usually be converted into executable code
(compiled) and run in many other OSs and CPUs without modifying the code!
The least portable program is one written in assembler: It depends on the specific
CPU family, the actual assembler program that transforms it into 0s and 1s (see
here) and the OS of the target machine (see here) !

Another distinction one makes is about expressivity. Higher-level languages
like Haskell or JavaScript are more expressive, meaning it’s easier to express, i.e.,
implement into code our ideas. For instance, in JavaScript a function has the
same status as any other variable and can thus be passed around like such. In
C, while there are ways to that in specific cases, it’s neither as easy nor always

2

http://www.tldp.org/HOWTO/Assembly-HOWTO/hello.html
http://asm.sourceforge.net/intro/hello.html

possible. In Haskell, for instance, it is easy to redefine the basic operators as
+, *, ==, etc to work with our own data type exactly as we use them for say
numbers! For instance, we could define our special type of list of 3 numbers,
called it mylist and declare that two such lists are equal if the middle elements
are equal. If mylist1=[1,2,3] and mylist2=[7,2,103] were two such lists,
we would simply write mylist1 == mylist2 in order to compare them. In this
case, the comparison would return true!

Finally, current, popular high-level languages like Python, JavaScript, Perl or
PHP hide a lot of delicate, low-level details from the programmer (e.g., specifying
the type of variables or allocating the memory needed to store an array’s content)
which are done automatically, and under the hood by the interpreter or the
compiler. This hiding of details is sometimes referred to as abstraction. The
main goal of these languages is allowing for fast prototyping of ideas.

Origin of C

The operating system UNIX was developed by AT&T Bell Laboratories in 1971,
in the USA. The first version of UNIX ran on the DEC PDP-7, an earlier version
of the DEC PDP-11, and was written in Assembler.

In order to be possible to port UNIX to other type of machines they required
to rewrite into a higher-level language. Such language had to be still capable of
running UNIX very fast and provide access to the computer’s hardware like the
memory or the registers of the CPU.

Brian Kernighan and Dennis Ritchie set out to design such a language and
implement the tools needed to use it. In 1978 they published their famous book
“The C Programming Language” that became the de facto standard with the
spread of UNIX as OS.

Standards

The same as natural languages like English, Spanish or German, programming
languages evolve with time.

What happens is that new features get usually added to the language, some
restrictions get removed and others enforced increasing thereby its expressivity
and portability.

The first standardization of C, known as ANSI-C, was established in 1989 and
lead to the unification of the different dialects of C that existed before.

The current standard of C, as of 2018, is called C11 (technically it is the standard
ISO/IEC 9899:2011).

3

https://en.wikipedia.org/wiki/PDP-11
https://en.wikipedia.org/wiki/C_(programming_language)#History

Classification of C

C is considered an imperative language. This is a language that consists of
variables, which are labels for locations in memory, and a series of instructions
that manipulate the data1.

The nature of imperative languages is directly related to the von Neumann’s
architecture of a computer. There the code that says how to manipulate the
data and the data itself, both reside in the same memory of the computer.

The central point of an imperative language is the Algorithm. An algorithm
is a precise recipe for solving a problem. All operational steps and their order
must be established to the last detail in order to achieve the desired result.

The mindset of the programmer when writing some code is sometimes referred
to as the conceptual pattern she uses in writing that code.

The conceptual pattern for the programming language C is the paradigm of
procedural programming. This consist in the idea that code that gets
repeated often should be solved by the concept of a procedure, that is, a
subprogram containing some instructional steps that gets assigned a name. In C
a procedure is simply a function.

Using instead an object-oriented (OO) paradigm (through a OO-oriented lan-
guage) we think on the solution of our problem as creating objects that can
be used only in very specific ways and with specific properties; in a functional
language, however, we only thing instead in terms of functions mapping some
input data into some other data which in turn become the input to another
function and so on.

Opposite to the imperative languages are the declarative2 languages. We don’t
tell the computer how to solve a problem, but only declare the key relationships
that the solution must satisfy. Some examples are Haskell, which is a purely
functional language, Prolog, a logic programming language, SQL, a standard for
accessing and manipulating databases, or Modellica.

Examples of languages and the (main) paradigm they offer:

• imperative languages are most of the best known as are the
– machine-oriented, chiefly Assembler
– procedural languages like C, FORTRAN, Perl, PHP
– object-oriented ones like C++, C#, Scala, Java, Python,

JavaScript,. . .
• declarative languages are still more niche ones like the

– functional languages like Haskell or Lisp
– logical-programming languages like Prolog
– Relational-database languages, like SQL or the modern AQL

1See for more wikipedia’s page here.
2See wikipedia’s page here.

4

https://en.wikipedia.org/wiki/Modelica
http://categoricaldata.net/aql.html
https://en.wikipedia.org/wiki/Imperative_programming
https://en.wikipedia.org/wiki/Declarative_programming

Most modern languages, however, tend to be multi-paradigm, meaning, they allow
us to design our code in procedural way, or an OO one or a functional language,
all possibilities within the same language. Examples are C++, JavaScript,
Python, Scala, where these all allow for programming in a procedural, OO or
functional way.

Abstractions

The advantage brought by high-level languages like C lies in three improvements
in abstraction level:

• Abstraction in expressions
• Abstraction wrt control structure (e.g, if_then_else).
• and Data abstraction

Abstraction can be thought of as a higher-view level that hides the lesser
important details making visible those that are important to us.

Abstraction of expressions

In general, an expression is a concatenation of operands, operators and parenthe-
ses, as, e.g., in 9 ∗ (13 + 5). This is an abstraction of what actually is required: In
Assembler we would need to first load each number into a register (e.g. eax,rpi,
etc.), then add them, then implement a multiplication!

Homework: How can we multiply any number by 9 in binary? Define an
algorithm, i.e., a defined set of steps, that on paper would do it.

Abstraction of control structures

A control structure refers to an instruction that affects the order of execution of
other instructions.

Example: In the early versions of FORTRAN an if-then control-structure would
be written as

IF (X - Y) 10, 300, 500
10 ...

GOTO 600
300 ...

GOTO 600
500 ...
600 ...

If x would be smaller than y, the flow of the program would continue at the line
of code labelled by 10, execute the statements found there until the statement

5

GOTO 600, which instructs the computer to continue with the code at the label
600; if equal, it would jump to the line labelled by 300 until the second GOTO
600; and, finally, if x would be larger, it would jump to the line labelled 500 and
continue from there.

Assembler is even more primitive. There we also have the unconditional jump
GOTO, with mnemonic jmp, but the if-then doesn’t exist. Instead we have
conditional jumps that depend on whether the result of the last operation was
smaller than zero or not, or if it was simply equal to 03.

Puzzle: How could we write the previous FORTRAN example only with such
conditional and unconditional jumps?

Homework: Write the previous FORTRAN example in C.

Clearly, the code between the GOTOs is a block of statements that in some sense
work as a single statement: only in specific cases will each block be executed.
To denote a block structure in C we use the braces {,}. From the location of
the braces, the compiler then sets on its own the corresponding labels for all the
jumps.

Data Abstraction

Data abstraction seeks to separate the representation of the data (e.g., do we
model our data as an array or as a set of independent integer variables?) from
the description of the operations we can do on/with the data. The advantage is
a higher portability and better security.

Through data abstraction, the details of the representation of the data are hidden
from the programmer. She only needs to know the signature of the operations
on them. In other words, she knows only what operations are possible, what
parameters they require and what are their return types.

Sometimes you may see the words syntax referring to the signature of the
operations, and semantic4 referring to what the operations do and how.

Example: What does it mean 7 ∗ 2? Well, we know the meaning of that
operation. We also know the syntax: first write one number, then comes the
asterisk and then the other number. The implementation in binary could consist
in just shifting all the bits of 7 one position to the left.

The key concept in data abstraction is the concept of Abstract Data Type
(ADT). Basically, it refers to arbitrary (say, user defined) representations of
data with arbitrary operations on it. Those operations require a precise signature
(syntax) and a meaning (semantic) that needs to be implemented.

3For more examples of mnemonics available in assembler, see here
4This is a word that comes from Greek and means “meaning” or “related to the meaning”.

6

https://en.wikibooks.org/wiki/X86_Assembly/Control_Flow

Example: A stack is data structure where one can only add an element or
remove an element to/from it. In particular it’s a FILO (first-in, last-out) type
of container.

However, we insist that once that is implemented, the ADT is defined only by
its operations!

Solving problems computationally, ultimately boils down to define the appropriate
ADT for each problem. Appropriate here means not only to be able to address
the relevant feature we want to describe but also implement the operations in
an efficient way!

Programming in C

The Caesar Cipher

The one-character cipher

Save the following code in a file called caesar-ch.c. Then generate an exe-
cutable by compiling it using the Gnu gcc compiler in the following way: gcc
caesar-ch.c -o caesar-ch.

This will create an executable called caesar-ch in the current directory.

#include<stdio.h>

int main(){
char c = getchar();
printf("You typed in a %c with ascii code %d\n",c,c);
c += 3 ;
printf("We'll encode it into code %d which corresponds to ascii char %c\n",c,c);
return 0;

}

We can execute it by issuing the following in the shell prompt: ./caesar-ch
(press enter after typing all these characters). The program will then wait for
you to type in a character, say w and see what the output says.

Remarks:

• Indentation is not mandatory but highly recommended. Keep the code
easy to read!

• The braces {,} delimit what’s called a scope: any variable defined inside a
scope is only visible there.

• All lines must end with a semi-colon, except after an opening or a closing
brace.

7

• Both variables and functions require to explicitly declare their type. In
this example, the return type of main is int, meaning an integer, and that
of the variable c is a char, meaning one single character.

• There must always be one and only one single function called main. This
is always were the program will start when it is executed.

• The functions getchar and printf come with C but wee need to in-
clude their code in our program. This we do by way of including the
library that contains their definition, namely the standard C in-
put/output library stdio.h.

• Inclusion of standard libraries must be done at the very beginning. The
syntax is #include<_name_of_lib_>.

• The function getchar returns the next character read from the standard
input device (the keyboard by default). By using the less-than character
< in the command line when executing the program, say

./caesar-ch < input_text

we can make the program read instead from the file input_text.

• The function printf can be given many arguments. The first one, however,
must be a literal string, as in these examples. This string contains text
that we want to print out as well as formatting codes (e.g., %s -for a
string-, %d -for an integer- , \n -for inserting a new line-), that help us
printing the additional arguments.

The Caesar cipher ver 0

#include<stdio.h>

int main(){
char c;
while ((c=getchar()) != EOF){

if(c == '\n') printf("%c",c);
else printf("%c",c+3);

}
return 0;

}

Remarks:

• The while keyword denotes another form of a loop control-structure. It’s
syntax is

while (_expression_) { _code_ }

8

It keeps repeating the code within its block while the expression evaluates
to true. It stops when it’s false and the the program flow continues right
after the while block.

• The conditional expression consists in a value != EOF. Here EOF denotes
the character that the getchar function gets when it tries to read
beyond the last character of its input5.

• The value in that expression is determined as follows: First a call to
getchar is made, then its return value is assigned to the variable c
(c=getchar()); finally, that value is the one used in the comparison.

The Caesar cipher ver 1

#include<stdio.h>
#include<stdlib.h>
#include<string.h>
// We need stdlib.h in order to use atoi function
// We need string.h in order to compare strings

/*

Make it encrypt or decrypt depending on a command-line option.

Usage: enc_caesar option < file

Input: option
option := (-e | -d) int
int := the caesar de/en-cryption code.

Notice, we require exactly 2 (two) arguments, the en/de-cryption switch
and its code.

File is read from standard input by default.

Output: file encrypted or decrypted depending on given option

For using an option program needs to read the command-line text,
more specifically what's called the command-line "arguments" of the program.

This is done using the argc and argv variables. Their type can be read from
the signature of the main function arguments.

5Internally, EOF is represented by the integer −1.

9

argc is an integer counting the number of arguments given, including the
very own program call.

argv is a character array containing the actual text of the command line up to,
and w/o including the '<'.

*/

int main(int argc, char** argv){
argc--; //we decrement by 1 the argument counter as the first argument argv[0]

//corresponds to the program name
argv++; //analogously, we increment the 'pointer' to the next command-line

//arguments. After these 2 lines, we point to the switch.
if (argc != 2) {

printf("ERROR: expecting 2 arguments, en/de-cryption switch and "
"its code, but found %d\n",argc);

return 1; //an exit value != 0 from main is standard for indicating an
//error happened while running the program.

}
char *option = argv[0] ; // string containing either "-e" or "-d"
int edc = atoi(argv[1]) ; // second argument is the en/de-cryption code;

//we need to make sure to convert it to an integer
//uncomment following line for testing
//printf("Proceeding with option %s and code %d\n",option,edc);
char c;
while ((c=getchar()) != EOF){

if (strncmp(option, "-e",2) == 0) c += edc ; // encrypt
else if (strncmp(option, "-d",2) == 0) c -= edc ; // decrypt
else {

printf("ERROR: unexpected option %s ...\n",option) ;
return 1;

}
printf("%c",c);

}
return 0;

}

Remarks:

• Anything we write after two forward-slashes //, and up to the end of that
line is ignored by the compiler. These are 1-line comments.

• Anything between /* and */ is also considered comments. This type of
comment can extend over multiple lines. Always add enough, but
concise comments to your in order to help others (and yourself
years later) to understand the meaning of your code!

• In order to read the content of the line we issue when executing our
program, we need to declare two parameters for main: argc and argv.

10

The first is of type int (for integer).

• The second parameter of main is of type char **. There are several points
of view to help us understand this type:

– argv is an array (aka list) of elements, each of type char *,
i.e., each of type, an array of elements, each of type char.
But, an array of chars is exactly what we understand as a string.
Whence,. . .

– argv is an array of strings. That is, we can picture it as
["string1", "string-thing-2", "this-is-tedious",...].

– argv is a pointer to an array of pointers, each of them in
turn pointing to an element of type char. We can picture this
in the following way:

∗ char c means variable c is of type char, a character. Example:
c=‘a’.

∗ char * ptr_c = &c, here ptr_c is a pointer to a char. This
means, ptr_c is a variable that contains the address in memory
of a thing of type char. In this particular case, ptr_c is the
address in memory of the char variable c. The syntax &c means
the address of the variable c.

∗ char * str = "This is a pointer to chars too" here str
is again a pointer to a char. In particular it points to the
address in memory of the first character of the string "This is a
pointer to chars too". The pointer logic allows for a unifying
view of many “string-like” things like strings and arrays: We can
do printf("%c %c %c",str[0],str[8],str[10]) which would
print T a p.

∗ str[0] means the address contained in str, whence it points to
the first, capital T;

∗ str[8] means the address contained in str + 8 more chars, whence
it points to the first, a;

∗ str[10] means the address contained in str + 10 more chars,
whence it points to the first, p;

• The function call strncmp(option, "-e", 2) compares the first 2 char-
acters of the string option with the literal string -e. It returns an integer
greater than, equal to, or less than 0, according as the string s1 is greater
than, equal to, or less than the string s2.

• This code contains several checkings for reducing the risk that the user
uses the program incorrectly. Introducing this kind of code is part of
working out the human-computer interface of your program. The goal
of this area of computer science, called Human-Computer Interaction
(HCI), is to understand what are the best ways for humans to interact
with computers and thus, to help determine a simple, but logical and
versatile interface to our programs.

11

It’s not easy to determine what such an interface is for any particular
application, and, in general, programmers look at this task with certain
contempt. They tend to ignore it and/or not devote enough effort into it,
claiming it is the user’s responsibility of learning how to use their program.
This attitude, however, is nothing but hubris in an attempt to disguise the
shortcomings as a programmer. A more humble and useful approach is to
accept that we can probably always improve the interface to our programs.

The Caesar cipher ver 2

#include<stdio.h>
#include<stdlib.h>
#include<string.h>
// We need stdlib.h in order to use atoi function
// We need string.h in order to compare strings

/*

Make it encrypt or decrypt depending on a command-line option.

Usage: enc_caesar option < file

Input: option
option := (-e | -d) int
int := the caesar de/en-cryption code.

Notice, we require exactly 2 (two) arguments, the en/de-cryption switch
and its code.

File is read from standard input by default.

Output: file encrypted or decrypted depending on given option

For using an option program needs to read the command-line text,
more specifically what's called the command-line "arguments" of the program.

This is done using the argc and argv variables. Their type can be read from
the signature of the main function arguments.

argc is an integer counting the number of arguments given, including the very
own program call.

argv is a character array containing the actual text of the command line up to,
and w/o including the '<'.

12

*/

int main(int argc, char** argv){
argc--; //we decrement by 1 the argument counter as the first argument

//argv[0] corresponds to the program name
argv++; //analogously, we increment the 'pointer' to the next command-line

//arguments. After these 2 lines, we point to the switch.
if (argc != 2) {

printf("ERROR: expecting 2 arguments, en/de-cryption switch and its "
"code, but found %d\n",argc);

return 1; //an exit value != 0 from main is standard for indicating an
//error happened while running the program.

}
int option ; //1 := encrypt ; -1 := decrypt
if (strncmp(argv[0],"-e",2)==0) option = 1 ;
else if (strncmp(argv[0],"-d",2)==0) option = -1 ;
else {

printf("ERROR: unexpected option %s ...\n",argv[0]) ;
return 1;

}
int edc = atoi(argv[1]) ; // second argument is the en/de-cryption code; we

//need to make sure to convert it to an integer
//uncomment following line for testing
//printf("Proceeding with option %s and code %d\n",option,edc);
char c;
while ((c=getchar()) != EOF){ //keep reading a character while it's not End-Of-File

c = c + option * edc ;
printf("%c",c);

}
return 0;

}

Remarks:

• This version contains only slight changes in the logic of the program. We
first determine what option (encrypt or decrypt) did the user choose and
store that information as an integer option (1 or -1). The choice of values is
justified by the way we use this variable inside the while loop: decrypting
is just using the same shift value but “to the opposite sense as during
encryption”. Whence it boils down to changing the sign of the shift value
edc.

The Caesar cipher ver 3

#include<stdio.h>
#include<stdlib.h>

13

#include<string.h>
// We need stdlib.h in order to use atoi function
// We need string.h in order to compare strings

/*

Make it encrypt or decrypt depending on a command-line option.

Usage: enc_caesar option < file

Input: int
int := the caesar de/en-cryption code.

Notice, we require exactly 1 (one) argument, the en/de-cryption code.

File is read from standard input by default.

Output: file encrypted or decrypted depending on given option

For using an option program needs to read the command-line text,
more specifically what's called the command-line "arguments" of the program.

This is done using the argc and argv variables. Their type can be read from
the signature of the main function arguments.

argc is an integer counting the number of arguments given, including the very
own program call.

argv is a character array containing the actual text of the command line up to,
and w/o including the '<'.

*/

int main(int argc, char** argv){
argc--; //we decrement by 1 the argument counter as the first argument

//argv[0] corresponds to the program name
argv++; //analogously, we increment the 'pointer' to the next command-line

//arguments. After these 2 lines, we point to the enc/dec code.
if (argc != 1) {

printf("ERROR: expecting 1 argument, the en/de-cryption code, "
"but found %d\n",argc);

return 1; //an exit value != 0 from main is standard for indicating an
//error happened while running the program.

}
int edc = atoi(argv[0]) ; // first argument is the en/de-cryption code; we

//need to make sure to convert it to an integer

14

char c;
while ((c=getchar()) != EOF){ //keep reading a character while it's not End-Of-File

printf("%c",c+edc);
}
return 0;

}

Remarks:

• If consider the code of version 2, we can see that we do not actually need
to track whether the user wants to encrypt or decrypt: In order to decrypt
a cipher text, if the user knows the shift code used for encryption, she just
needs to use the same process but the negative of that shift value.

• Whence, we changed the logic of our program completely: We only ask
the user as input a shift value. Our program is agnostic of whether it
corresponds to an encryption or a decryption phase -this has only a meaning
for the user: the math of the problem is the same in both cases.

• If the logic is simpler, so can be as well our code. A simpler code, is a
more reliable and easier to troubleshoot code.

The gist of the Caesar cipher

#include<stdio.h>
#include<stdlib.h>

int main (int argc , char** argv){
if (argc < 2) return 1; // needs at least 1 argument, the shift code
char c;
int edc = atoi(argv[1]) ;
while ((c=getchar()) != EOF) printf("%c",c+edc) ;
return 0;

}

Save this code into a file called caeser.c, compile it (gcc caesar.c -o caesar)
and run it as

$./caesar edc < plain-text-file > cipher-text-file
$ xxd -p cipher-text-file

See the assignment 2 for an explanation of what the output of xxd -p
cipher-text-file means.

Remarks:

• If a program is short enough, it’s likely that it’s easier to understand its
meaning/what it does. Whence it’s likely that we don’t need as many
comments.

15

• The structure of our code helps reading it. Put some effort into making
it easy and logical to read your text: your are indeed but writing a
mathematical proof for solving a problem (getting a particular
output given a particular input)!

• Here the structure is: First, deal with a minimum of HCI: truly speaking
there is no HCI addressed here. The only thing we do in the first line
is not letting the program crash with a cryptic error message,
but smoothly, silently end with a non-zero return value. Run
./caesar without any arguments and check out the return code by issuing
the shell command echo $? right after the program finishes. You should
see a 1. On the contrary, if the program completes as expected, echo $?
will print a 0.

• Second, we deal with the two local variables that our program need
(local means that they are only visible inside the block defining main).
Notice that his is done as close as possible to the point in the code where
we first start using them.

• Finally, as the block of the while loop contains only one single statement,
we can get rid of the braces and write the whole loop in one single line.

Questions:

1. Which of the previous codes for the Caesar cipher looks simpler to you?
2. Which of the previous codes for the Caesar cipher looks aesthetically more

appealing to you?
3. Which of the previous codes for the Caesar cipher would you say is easier

to debug/troubleshoot?

Assignment 2

Questions:

1. In Linux/OSX there is a command-line tool called xxd. It allows the
conversion of file content into hexadecimal and/or binary. Consider the
file xxdexample with the content:

This is a text file to showcase
what xxd program can do.

Hope it helps.

Issuing in the command line xxd xxdexample we get

00000000: 5468 6973 2069 7320 6120 7465 7874 2066 This is a text f
00000010: 696c 6520 746f 2073 686f 7763 6173 6520 ile to showcase
00000020: 0a77 6861 7420 7878 6420 7072 6f67 7261 .what xxd progra
00000030: 6d20 6361 6e20 646f 2e0a 0a48 6f70 6520 m can do...Hope
00000040: 6974 2068 656c 7073 2e0a it helps..

16

On the left there is a count of the number of bytes (in each line 16, which
in hex is 10). In the middle there is the content of the file in hexadecimal
and grouped into pairs of bytes, whence we see only 8 groups per line.
Finally, the last column shows the content of the file in ascii.

A slight variation of the previous command yields just the hexadecimal ver-
sion of the file’s content, which we redirect into a file called xxdexample.hex
using the > output-redirection command:

$ xxd -p xxdexample > xxdexample.hex
$ cat xxdexample.hex
$ 54686973206973206120746578742066696c6520746f2073686f77636173
$ 65200a77686174207878642070726f6772616d2063616e20646f2e0a0a48
$ 6f70652069742068656c70732e0a

We can revert the hexadecimal encoding of a file into its original version
(be it ascii or binary) using the following options of xxd:

$ xxd -r -p xxdexample.hex
$ This is a text file to showcase
$ what xxd program can do.
$
$ Hope it helps.

Given the plain text of the above cipher examples, determine the encoding
code used in order to get the following cipher text (hexdump version):

5b6f707a27707a277b6f6c2774767a7b277b7677277a6c6a796c7b27746c
7a7a686e6c117b6f687b275027517c73707c7a274a686c7a6879276a767c
736b277e79707b6c36796c6a6c707d6c35111151354a35276b707f707b11

2. Given the Caesar cipher ver 3, and the following encrypted text, find out the
corresponding plain text. The ciphertext, that is, the encrypted text can
be downloaded from http://msantos.sdf.org/G10/Term2/ciphertxt. Hint:
In the shell, man ascii provides you with a table of all ascii characters.
Among them, you may recognize the ones that are actually printable.

Bibliography

1. The C++ web site
2. Joachim Goll and Mandred Dausmann, C als erste Programmiersprache.

8th edition, Springer Verlag, 2014.
3. . . .
4. . . .

17

http://msantos.sdf.org/G10/Term2/ciphertxt
http:www.cplusplus.com

	An Abridged Introduction to C
	Foreword
	C
	What is C
	Origin of C
	Standards

	Classification of C
	Abstractions
	Abstraction of expressions
	Abstraction of control structures
	Data Abstraction

	Programming in C
	The Caesar Cipher
	The one-character cipher
	The Caesar cipher ver 0
	The Caesar cipher ver 1
	The Caesar cipher ver 2
	The Caesar cipher ver 3
	The gist of the Caesar cipher

	Assignment 2
	Bibliography

